

Lecture Notes in Computer Science 3933
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Francesco Bonchi Jean-François Boulicaut (Eds.)

Knowledge Discovery
in Inductive Databases

4th International Workshop, KDID 2005
Porto, Portugal, October 3, 2005
Revised Selected and Invited Papers

13

Volume Editors

Francesco Bonchi
Pisa KDD Laboratory, ISTI - C.N.R.
Area della Ricerca di Pisa
Via Giuseppe Moruzzi, 1 - 56124 Pisa, Italy
E-mail: francesco.bonchi@isti.cnr.it

Jean-François Boulicaut
INSA Lyon, LIRIS CNRS UMR 5205
Bâtiment Blaise Pascal, 69621 Villeurbanne Cedex, France
E-mail: jean-francois.boulicaut@insa-lyon.fr

Library of Congress Control Number: 2006922625

CR Subject Classification (1998): H.2, I.2

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-33292-8 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-33292-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11733492 06/3142 5 4 3 2 1 0

Preface

The 4th International Workshop on Knowledge Discovery in Inductive Databases
(KDID 2005) was held in Porto, Portugal, on October 3, 2005 in conjunction
with the 16th European Conference on Machine Learning and the 9th European
Conference on Principles and Practice of Knowledge Discovery in Databases.

Ever since the start of the field of data mining, it has been realized that
the integration of the database technology into knowledge discovery processes
was a crucial issue. This vision has been formalized into the inductive database
perspective introduced by T. Imielinski and H. Mannila (CACM 1996, 39(11)).
The main idea is to consider knowledge discovery as an extended querying pro-
cess for which relevant query languages are to be specified. Therefore, inductive
databases might contain not only the usual data but also inductive general-
izations (e.g., patterns, models) holding within the data. Despite many recent
developments, there is still a pressing need to understand the central issues
in inductive databases. Constraint-based mining has been identified as a core
technology for inductive querying, and promising results have been obtained for
rather simple types of patterns (e.g., itemsets, sequential patterns). However,
constraint-based mining of models remains a quite open issue. Also, coupling
schemes between the available database technology and inductive querying pro-
posals are not yet well understood. Finally, the definition of a general purpose
inductive query language is still an on-going quest.

This workshop aimed to bring together database, machine learning and data
mining researchers/practitioners who were interested in the numerous scientific
and technological challenges that inductive databases offers. The workshop fol-
lowed the previous three successful workshops organized in conjunction with
ECML/PKDD: KDID 2002 held in Helsinki, Finland, KDID 2003 held in Cavtat-
Dubrovnik, Croatia, and KDID 2004 held in Pisa, Italy. Its scientific program
included seven regular presentations and four short communications, an invited
talk by Carlo Zaniolo, and an invited “workshop-closing talk” by Arno Siebes.
During the workshop, only informal proceedings were distributed. Most of the
papers within this volume have been revised by the authors based on the com-
ments from the initial referring stage and the discussion during the workshop.
A few are invited chapters.

We wish to thank the invited speakers, all the authors of submitted papers,
the Program Committee members and the ECML/PKDD 2005 Organization
Committee. KDID 2005 was supported by the European project IQ “Inductive
Queries for Mining Patterns and Models” (IST FET FP6-516169, 2005-2008).

December 2005 Francesco Bonchi
Jean-François Boulicaut

Organization

Program Chairs

Francesco Bonchi
Pisa KDD Laboratory
ISTI - C.N.R.
Italy
http://www-kdd.isti.cnr.it/∼bonchi/

Jean-François Boulicaut
INSA Lyon
France
http://liris.cnrs.fr/∼jboulica/

Program Committee

Hendrik Blockeel, K.U. Leuven, Belgium
Toon Calders, University of Antwerp, Belgium
Sašo Džeroski, Jozef Stefan Institute, Slovenia
Minos N. Garofalakis, Bell Labs, USA
Fosca Giannotti, ISTI-C.N.R., Italy
Bart Goethals, University of Antwerp, Belgium
Dominique Laurent, LICP, Université de Cergy-Pontoise, France
Giuseppe Manco, ICAR-C.N.R., Italy
Heikki Mannila, University of Helsinki, Finland
Rosa Meo, University of Turin, Italy
Taneli Mielikäinen, University of Helsinki, Finland
Katharina Morik, University of Dortmund, Germany
Céline Robardet, INSA de Lyon, France
Sunita Sarawagi, KR School of Information Technology, IIT Bombay, India
Arno Siebes, University of Utrecht, The Netherlands
Mohammed Zaki, Rensselaer Polytechnic Institute, USA
Carlo Zaniolo, UCLA, USA

Table of Contents

Invited Papers

Data Mining in Inductive Databases
Arno Siebes . 1

Mining Databases and Data Streams with Query Languages and Rules
Carlo Zaniolo . 24

Contributed Papers

Memory-Aware Frequent k-Itemset Mining
Maurizio Atzori, Paolo Mancarella, Franco Turini 38

Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data
Jérémy Besson, Ruggero G. Pensa, Céline Robardet,
Jean-François Boulicaut . 55

Experiment Databases: A Novel Methodology for Experimental
Research

Hendrik Blockeel . 72

Quick Inclusion-Exclusion
Toon Calders, Bart Goethals . 86

Towards Mining Frequent Queries in Star Schemes
Tao-Yuan Jen, Dominique Laurent, Nicolas Spyratos,
Oumar Sy . 104

Inductive Databases in the Relational Model: The Data as the Bridge
Stefan Kramer, Volker Aufschild, Andreas Hapfelmeier,
Alexander Jarasch, Kristina Kessler, Stefan Reckow, Jörg Wicker,
Lothar Richter . 124

Transaction Databases, Frequent Itemsets, and Their Condensed
Representations

Taneli Mielikäinen . 139

Multi-class Correlated Pattern Mining
Siegfried Nijssen, Joost N. Kok . 165

VIII Table of Contents

Shaping SQL-Based Frequent Pattern Mining Algorithms
Csaba István Sidló, András Lukács . 188

Exploiting Virtual Patterns for Automatically Pruning the Search Space
Arnaud Soulet, Bruno Crémilleux . 202

Constraint Based Induction of Multi-objective Regression Trees
Jan Struyf, Sašo Džeroski . 222

Learning Predictive Clustering Rules
Bernard Ženko, Sašo Džeroski, Jan Struyf . 234

Author Index . 251

Data Mining in Inductive Databases

Arno Siebes

Universiteit Utrecht,
Department of Computer Science,

Padualaan 14, 3584CH Utrecht, The Netherlands
arno@cs.uu.nl

Abstract. Ever since the seminal paper by Imielinski and Mannila [11],
inductive databases have been a constant theme in the data mining liter-
ature. Operationally, such an inductive database is a database in which
models and patterns are first class citizens.

In the extensive literature on inductive databases there is at least one
consequence of this operational definition that is conspicuously missing.
That is the question: if we have models and patterns in our inductive
database, how does this help to discover other models and patterns? This
question is the topic of this paper.

1 Introduction

Ever since the start of research in data mining, it has been clear that data
mining, and more general the KDD process, should be merged into DBMSs.
Since the seminal paper by Imielinski and Mannila [11], the so-called inductive
databases have been a constant theme in data mining research, with its own
series of workshops.

Perhaps surprisingly, there is no formal definition of what an inductive
database actually is. In [30] it is stated that it might be too early for such a defini-
tion, given the issues I raise in this paper, I tend to agree with this opinion. Still,
we need some sort of shared concept of an inductive database.

Mostly, people think of inductive databases in analogy with deductive
databases; an analogy that is not without its weaknesses as we will see later. I take
a slightly different angle, viz., an inductive database is a database in which the dis-
covered models and patterns are first class citizens. That is, we should be able to
treat models and patterns as any other data object. This very operational defini-
tion of an inductive database is our guiding principle in this paper.

Research in inductive databases is mainly focused on two aspects:

1. The integration of data mining and DBMSs, which itself encompasses two,
not necessarily disjunct, main topics,
(a) database support for data mining, or, the integration of data mining

algorithms into a DBMS and
(b) integrating data mining into standard query languages like SQL.

2. Querying models and patterns.

F. Bonchi and J.-F. Boulicaut (Eds.): KDID 2005, LNCS 3933, pp. 1–23, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 A. Siebes

These are clearly important aspects of an inductive database and surprisingly
hard to do well to boot. However, they are not all there is for an inductive
database. This alone doesn’t make models and patterns first class cizitizens. In
fact, the most important aspect of an inductive database is missing: the data
mining!

This might seem a strange statement since both main topics are deeply con-
cerned with data mining. The first one is all about making data mining no
different from other, more standard, queries in, e.g., SQL. The second one is
about storing the models and patterns that result from mining queries in the
database and querying those results with constraints.

This is very much in line what would would expect for inductive databases,
especially if one compares with deductive databases [23]. For, except for the
architectural issues of integration, these topics can be nicely formalised in first
order logic [30]. Moreover, pushing the query constraints into the mining algo-
rithm is a natural extension of standard relational query optimisation.

So, the analogy of inductive databases and deductive databases is certainly a
fruitful one. However, this analogy doesn’t tell the whole story.

In deductive databases, the Intentional Database (the rules) is a static
component. Queries result in new facts, not in new rules.

In data mining, however, we are not interested in new facts, we want to dis-
cover new models and patterns. If we already have models and patterns in our
database, a natural question is: does this help? So, a central question for data
mining in inductive databases that is not covered by the analogy with deductive
databases is:

How do the models and patterns we have already discovered help us
in discovering other models and patterns?

This question is the topic of this paper. Given that it is an invited paper, I feel
free to raise more questions than I answer. The goal is to point to new research
questions, not to answer them.

I discuss three aspects of this question in this paper:

Relational Algebra: Models and patterns are tightly connected to the data
tables they have been induced from. In a DBMS we can construct new ta-
bles from existing ones using relational algebra. It would be useful if these
algebraic manipulations could be lifted to the models and patterns. It would
give us models and patterns for free.

Models for Models: If we have already induced models and/or patterns from
a data table, does this help us in the induction of other models and/or
patterns from that same table?

Models on Models: If models and patterns are first class citizens in our data-
base,we should be able tomine a collection ofmodels or a collection of patterns.
How can we do this and, perhaps more importantly, does this make sense?

The questions are discussed both from a pattern and from a model perspective.
The patterns used are mostly frequent item sets, the models mostly Bayesian
networks.

Data Mining in Inductive Databases 3

This paper is not meant to be a survey paper, i.e., it is in no way complete.
For some if not all off the (sub-)questions the paper discusses there is far more
published literature than is mentioned or discussed. The choices made are mostly
based on what I thought would nicely illustrate my point. Moreover, there is a
clear bias to papers I have been involved in1.

The road map of this paper is as follows. In Section 2, some preliminaries are
introduced. The next three sections discuss the three sub-questions introduced
above. Finally, in the final section concludes the paper by formulating a couple
of research topics I feel are important for inductive databases.

2 Preliminaries

In order to keep our discussion simple, we assume a binary database. In fact, in
general we assume the database contains one binary table. Only in the case of
relational algebra we assume multiple tables when the operators require more
than one input table.

In the case of frequent item sets, we use the standard terminology of items and
transactions. In the Bayesian networks case, we will mostly call them variables
and tuples. Given the simple relationship between a binary table and a set of
transactions, this should not confuse the reader. We discuss both contexts briefly.

2.1 Models and Patterns

In the introduction we already used both the terms model and patterns. Both
terms are probably familiar to all data miner, although I wouldn’t know a formal
definition of either. The goal of this subsection is not to present such a definition,
but to point out the most important difference between the two.

Models describe the whole database, they are global. Patterns describe local
phenomena in the database. In [8], a pattern is defined by:

data = model + patterns + random

In [22] this definition extended with three characteristics, viz.,

– Local patterns cover small parts of the data space.
– Local patterns deviate from the distribution of which they are part.
– Local patterns show some internal structure.

In other words, while a model tries to capture the whole distribution, patterns
describe small sub-spaces were this distribution differs markedly from the global
picture.

Given this distinction, it seems obvious that models that have been discovered
offer more aid in the discovery of other models and patterns than discovered pat-
terns can. While most of the examples in this paper agree with this observation,
this is not true for all of them.
1 In other words, this paper is blatant self promotion!

4 A. Siebes

2.2 Frequent Item Sets

The problem of frequent item set mining [1] can be described as follows. The
basis is a set of items I, e.g., the items for sale in a store; |I| = n. A transaction
t ∈ P(I) is a set of items, e.g., representing the set of items a client bought at
that store. A database over I is simply a set of transactions, e.g., the different
sale transactions in the store on a given day. An item set I ⊂ I occurs in a
transaction t ∈ db iff I ⊆ t. The support of I in db, denoted by suppdb(I) is
the number of transactions in the database in which t occurs. The problem of
frequent item set mining is: given a threshold min-sup, determine all item sets
I such that suppdb(I) ≥ min-sup. These frequent item sets represent, e.g., sets
of items customers buy together often enough.

Association Rules are generated from these frequent item sets. If X is a fre-
quent item set and Y ⊂ X,

X \ Y → Y

is an association rule. Its confidence is defined as suppdb(X)
suppdb(X\Y) . For association

rule mining, one has the min-sup threshold for support and a min-conf threshold
for the confidence of a rule. The problem is to find all rules that satisfy both
minimal thresholds.

Often there are other interestingness measures used to reduce the number of
discovered association rules. The one that is most often used is the lift. The lift
of a rule X → Y is defined as confdb(X→Y)

suppdb(Y) .
If the database consists of a set of sequences of events, we can define analogous

concepts [20]. An episode is simply a sequence of events. An episode E occurs
in a sequence S if deleting events from S yields E; note that an episode E may
occur multiple times in S. The support of an episode is the number of times an
episode occurs in the database. With a minimal support threshold, the problem
is: find all frequent episodes.

2.3 Bayesian Networks

Bayesian networks by now are widely accepted as powerful tools for representing
and reasoning with uncertainty in decision-support systems. A Bayesian network
is a concise model of a joint probability distribution over a set of stochastic vari-
ables [29]; it consists of a directed acyclic graph that captures the qualitative
dependence structure of the distribution and a numerical part that specifies con-
ditional probability distributions for each variable given its parents in the graph.
Since a Bayesian network defines a unique distribution, it provides for computing
any probability of interest over its variables.

A Bayesian network is a concise representation of a joint probability distri-
bution over a set of stochastic variables X = (X1, . . . , Xn). The network con-
sists of a directed acyclic graph in which each node corresponds with a variable
and the arcs capture the qualitative dependence structure of the distribution.
The network further includes a number of conditional probabilities, or param-
eters, p(Xi | Xπ(i)) for each variable Xi given its parents Xπ(i) in the graph.

Data Mining in Inductive Databases 5

The graphical structure and associated probabilities with each other represent
a unique joint probability distribution Pr(X) over the variables involved, which
is factorised according to

Pr(X) =
n∏

i=1

p(Xi | Xπ(i))

There are numerous algorithms that induce Bayesian networks from data, see,
e.g., [24].

3 Lifting Relational Algebra

The question is: can we extend the relational operators to models and patterns?
By focusing on the relational algebra, we have already a syntax. How about the
semantics? For example, what is the join of two models? Obviously there are
many ways in which this can be defined and the choice for a particular seman-
tics is perhaps the most important factor for our practical view on inductive
databases. Our choice is to lift the standard operators to models. Lifting means
that we want our new operator to construct a new model or a new collection of
patterns from the input models or patterns only. That is, without consulting the
database.

Note, we use the bag semantics for relational algebra rather than the set
semantics that are more standard in database theory. The reason is that the
databases we want to mine adhere to the bag semantics since this is the under-
lying principle of each available DBMS.

3.1 Select

The relational algebra operator σ (select) is a mapping:

σ : B(D) → B(D)

in which B(D) denotes all possible bags over domain D.
Lifting means that we are looking for an operator σ(D,A) that makes the

diagram in figure 1 commute: Such diagrams are well-known in , e.g., category
theory [3] and the standard interpretation is:

A ◦ σ = σ(D,A) ◦ A

M
σ(D,A)� M

B(D)

A
�

σ� B(D)

A
�

Fig. 1. Lifting the selection operator

6 A. Siebes

In other words, first inducing the model using algorithm A followed by the appli-
cation of the lifted selection operator σ(D,A) yields the same result as first applying
the standard selection operator σ followed by induction with algorithmA.

For algorithms that do compute the optimal result, such a strict interpretation
of the diagram seems reasonable. However, many algorithms rely on heuristic
search. In such cases, it doesn’t seem reasonable at all to require this strict
reading of the diagram. Rather we settle for a reasonably good approximation.
That is, the lifted selection operator doesn’t have to result in a locally optimal
model, but it should be close to one2. If not explicitly stated otherwise, we will
use commutation in this loose sense.

Frequent Item Sets. The three basic selections are σI=0, σI=1, and σI1=I2 .
More complicated selections can be made by conjunctions of these basic com-
parisons. We look at the different basic selections in turn.

First consider σI=0. If it is applied to the database, all transactions in which I
occurs are removed from the database. Hence, all item sets that contain I get a
frequency of zero in the resulting database. For those item sets in which I doesn’t
occur, we have to compute which part of their support consists of transactions
in which I does occur and subtract that number. Hence, we have:

freqσI=0(db)(J) =

{
0 if I ∈ J ,
freqdb(J)− freqdb(J ∪ {I}) else.

If we apply σI=1 to the database, all transactions in which I doesn’t occur
are removed from the database. In other words, the frequency of item sets that
contain I doesn’t change. For those item sets that do not contain, the frequency
is given by those transactions that also contained I. Hence, we have:

freqσI=1(db)(J) =

{
freqdb(J) if I ∈ J ,
freqdb(J ∪ {I}) else.

If we apply σI1=I2 to the database, the only transactions that remain are
those that either contain both I1 and I2 or neither. In other words, for frequent
item sets that contain both the frequency remains the same. For all others, the
frequency changes. For those item sets J that contain just one of the Ii the
frequency will be the frequency of J ∪ {I1, I2}. For those that contain neither
of the Ii, we have to correct for those transactions that contain one of the Ii in
their support. If we denote this by freqdb(J¬I1¬I2) (a frequency that can be
easily computed) We have:

freqσI1=I2 (db)(J) =

{
freqdb(J ∪ {I1, I2}) if {I1, I2} ∩ J �= ∅,
freqdb(J¬I1¬I2) else.

Clearly, we can also “lift” conjunctions of the basic selections, simply process
one at the time. So, in principle, we can lift all selections for frequent item sets.
2 Given the nature of this paper, I am not going to attempt to formalise this notion.

I hope the reader has some idea of what I mean.

Data Mining in Inductive Databases 7

M
σ(D,A)� M

B(D)

A
�

σ�

Aσ

�

B(D)

A
�

Fig. 2. Lifting selections for succinct constraints

But only in principle, because we need the frequency of item sets that are not
necessarily frequent. Frequent item sets are a lossy model (not all aspects of the
data distribution are modelled) and that can have its repercussions: in general
the lifting will not be commutative. In our loose sense of “commutativity”, the
situation is slightly better. For, we can give bounds for the resulting frequencies.

We haven’t mentioned constraints [25] so far. Constraints in frequent item
set mining are the pre-dominant way to select a subset of the frequent item
sets. That is exactly, why we haven’t mentioned them so far. In general the con-
straints studied do not correspond to selections on the database. The exception
is the class of succinct anti-monotone constraints introduced in [26]. For these
constraints there is such a selection (that is what succinct means) and the con-
straint can be pushed into the algorithm. This means we get the commutative
diagram in figure 2. Note that in this case we know that the diagonal arrow
makes the bottom right triangle commute in the strict sense of the word. For
the upper left triangle, as well as the square, our previous analysis remains true.

Bayesian Networks. The selections σA=0 and σA=1 in Bayesian networks are a
simple example of partial knowledge: if we know that variable A has value 1, what
can we infer about the values of the other attributes? There are standard inference
algorithms [24] for this problem that allow us to propagate this partial knowledge
After that, we can remove the variables that are now fixed, such as A. For example:

B ← A→ C transforms to B C

That is, in this example B and C become independent after the selection. In
the case of induced dependencies, we have to be careful to add the necessary
induced arcs, such as:

B → A← C transforms to B → C

Note that for this simple case, the inference algorithms are polynomial.
The selection σA=B is slightly more complicated. There are three cases we

need to consider.
Firstly, if A and B are in disconnected components of the graph, we can sim-

ply add an arc from A to B3. Furthermore, we have to update the (conditional)
probability table of B such that it gives probability zero to those cases were

3 Or from B to A, without a causal interpretation this doesn’t matter.

8 A. Siebes

the configuration gives different values to A and B. Moreover, for the configura-
tions that give equal values to A and B, we the probability-assignment should
such that the marginal P (B|A) = 1. Given that the other marginals should not
change, this completely specifies the probability table.

Secondly, if there is an arrow from A to B, the selection σA=B is again a case
of partial knowledge. We simply update the conditional probability table of B
and propagate this knowledge through the network as before.

Thirdly, and finally, if there exists a path between A and B, we have to be
careful not to introduce a cycle in the network. However, it will always be possible
to either add an arc from A to B or the other way around without introducing
such a cycle. Then we update the tables as before and propagate.

Note that given the heuristic nature of Bayesian network discovery, we cannot
expect the diagram to commute in the strict sense. However, there is every reason
to believe that we will end up with a good approximation. For the simple reason
that we mostly rely on inference, which is a pretty accurate procedure. Hence, if
the original network is a good representation of the underlying distribution, the
derived network should be a good representation of the restricted distribution.

3.2 Project

For the projection operator π we have a new domain D1 such that D = D1 ×D2.
Projection on D1 has thus as signature:

πD1 : B(D) → B(D1)

Hence, we try to find an operator πA
D1

that makes the diagram in figure 3 commute.
Note that D1 is spanned by the set of variables (or items) we project on.

Frequent Item Sets. We project on a set of items J ⊆ I, let J ⊆ I be a
frequent item set. There are three cases to consider:

1. If J ⊆ J , then all transactions in the support of J will simply remain in the
database, hence J will remain frequent.

2. If J∩J �= ∅, then J∩J is also frequent and will remain in the set of frequent
item sets.

3. If J ∩ J = ∅, then its support will vanish.

In other words, if F denotes the set of all frequent item sets, then:

πJ (F) = {J ∈ F|J ⊆ J }

M
πA

D1� M

B(D)

A
�

πD1� B(D1)

A
�

Fig. 3. Lifting projections

Data Mining in Inductive Databases 9

Clearly, this method of lifting will make the diagram commute in the strict sense
if we use an absolute minimal frequency. In other words, for projections, frequent
item sets do capture enough of the underlying data distribution to allow lifting.

Bayesian Networks. A Bayesian network represents a probability distribu-
tion. For probability distributions, projections are known as marginalizations.
For example, if we have a distribution P (A,B,C), we get the corresponding
distribution on A and B by:

P (A,B) =
∑
C

P (A,B,C)

Basically, this is what we do for each node in the network. All variables have
their conditional probability tables marginalised on parents not in the domain
projected on. So, again we get lifting in the approximation sense easily.

3.3 Cartesian Product

For the Cartesian product, we have two tables R1 and R2 with domains D1 and
D2 and its signature is:

× : B(D1)× B(D2) → B(D1 ×D2)

In other words, we are looking for an operator that makes the following diagram
in figure 4 commute.

M×M ×A
� M

B(D1) × B(D2)

A×A
�

×� B(D1 × D2)

A
�

Fig. 4. Lifting the Cartesian product

Frequent Item Sets. Let J1 be a frequent item set for the first database and
J2 for the second. The frequency of the pair on the Cartesian product of the two
database is simply given by:

freqdb1×db2(J1, J2) = freqdb1(J1)× freqdb2(J2)

While this is easy to compute, it means again that in general we will not be able
to compute all frequent item sets on the Cartesian product without consulting
the database. Even if we set the minimal frequency to the product of the two
minimal frequencies, the combination of an infrequent item set on one database
with a frequent one on the other may turn out to be frequent.

In other words, we cannot even make the diagram commute in the approximate
sense of the word. The reason is that frequent item sets do not capture enough
of the underlying data distribution. This shouldn’t come as a surprise, patterns
are not supposed to capture too much of the distribution.

10 A. Siebes

Bayesian Networks. For Bayesian networks, the situation is completely differ-
ent. In fact, the Cartesian product is the easiest operator imaginable for Bayesian
networks. For, in db1×db2, a tuple in db1 is combines with each tuple in db2 and
vice versa. That is knowledge about the db1 part doesn’t convey any information
about the db2 part and vice versa. That is, the two components are completely
independent.

In other words, if BN1 is the Bayesian network induced from db1 and BN2 that
for db2, the Bayesian network for db1 × db2 simply consists of two disconnected
components: BN1 and BN2.

Note that this also implies that we can lift the Cartesian product for Bayesian
networks in the strong sense. Since the induction algorithm A works, for all
practical purposes, independently on the two components one would expect the
diagram to commute strictly.

3.4 EquiJoin

The equijoin is defined as ��= π ◦ σ ◦ ×, it has as signature:

��: B(D1)× B(D2) → B(D1 �� D2)

In other words, we want to make the diagram given in figure 5 distribute.

M×M ��A
� M

B(D1) × B(D2)

A×A
�

��� B(D1 �� D2)

A
�

Fig. 5. Lifting the equijoin

Frequent Item Sets. Given the fact that lifting is not completely possible for
both selections and Cartesian products for frequent item sets, there is little hope
that one can lift the equijoin.

Bayesian Networks. Given that we already know hoe to lift all three basic
operations, lifting the equi-join is a straight-forward procedure. The details are
left as an exercise to the reader.

3.5 Set Operations

For so-called union compatible relations, i.e. two relations with the same scheme,
the standard set operations {∪,∩, \} are also defined. Each θ ∈ {∪,∩, \} has as
signature:

θ : B(D)× B(D) → B(D)

In other words, we want to make the diagram in figure 6 commute.

Data Mining in Inductive Databases 11

M×M θA
� M

B(D) × B(D)

A×A
�

θ� B(D)

A
�

Fig. 6. Lifting set operators

Frequent Item Sets. The union for frequent item sets is a well studied topic
as it is a central issue in distributed data mining. A survey of this area is far
beyond the scope of the present article, the reader is referred to [13] instead.

The intersection is a far harder problem. The reason is that frequent item
sets only code frequent parts of transactions. It is very well possible that each
transaction contains one or more items that are not covered by any frequent
item set. In other words, we only have partial knowledge about the transactions.
If we compute the intersection of two sets of transactions on the other hand, we
do employ complete information about the transactions: only those that occur
in both remain. This means that we cannot compute the frequent item sets that
hold for the intersection. In fact it is possible that an item sets J is frequent on
both database while it has no support at all on the intersection.

Set difference, like the intersection, depends on complete knowledge of the
transactions. Hence, like for intersection, we cannot lift this operator.

Bayesian Networks. As for frequent item sets, the union of Bayesian networks
is a well studied problem. Clearly, if both database are sufficiently large, both
BN’s should be a good approximation of the generating probability distribution.
Ideally they should be the same network. In practice, of course, they rarely
are. There are various ways to unify the different networks, the LinOP bases
algorithm in [10] presents a good example.

Again, the intersection presents a far harder problem. The basic question is:
what network would we have learned if we had used less data? There doesn’t
seem to be a reasonable answer to this question. An observation that equally
holds for set difference.

3.6 Conclusions

In this section we have investigated how the operators from relational algebra
can be lifted for both frequent item sets and for Bayesian networks. The two
main conclusions from this exercise are as follows.

1. In many cases frequent item sets simply do not capture enough of the un-
derlying distribution to allow a “database-free” combination.

2. Bayesian networks on the other hand are meant to capture this underlying
distribution, which is born out by the fact that lifting seems4 to be possible

4 “Seems” because I have only provided arguments, no formal proofs.

12 A. Siebes

in most cases. The cases were it doesn’t work are those were the underlying
distribution may be changed in unforeseen ways, i.e., intersection and set
difference.

My guess is that Frequent Item Sets are a typical example for any pattern class.
Since the goal of pattern mining is to discover interesting local behaviour, most
if not all patterns will not capture essential characteristics of the underlying
distribution. In other words, lifting will only be possible in sporadic cases, like
the projection for frequent item sets.

For models it is less straight forward to generalise from Bayesian networks.
Bayesian networks are in a sense a-typical, unlike many other model classes
there are no dependent variables. When there is a dependent variable, such as
for classification, the quality of models is determined by how good they classify
new data. For this task it is not necessary, or even detrimental, to model the
complete underlying distribution. The difference between Bayesian networks and
Baysian classifiers is a good illustration of this point. In other words, I do suspect
that lifting will be more complicated for model classes with dependent variables.

In any case, our brief investigation in this section has barely scratched the
surface of the lifting problem. A formal definition of relational algebra operators
in inductive databases still requires a lot of research.

4 Models for Models

The second question we address is: do the models and patterns we have discov-
ered help in the discovery of other models or patterns? This seems a reasonable
requirement for an inductive database. One would expect some reward for storing
these earlier results as first class citizens in the database.

There has been no systematic research effort in this direction that I am aware
of, but there are examples in the literature. We discuss a few of these in this
section.

4.1 In the Same Class

The first examples we briefly discuss remain in the same class of models. First
we look at condensed representations for frequent item sets. Next we look at
combining classifiers.

Frequent Item Sets. One example that remains in the same class of patterns
is condensed representations. That is, a subset C of the set F of all frequent item
sets for a given minimal support such that all elements of F and their support
can be computed from the elements of C and their support. In other words, F
can be generated from C.

Condensed representations have some potential advantages over the complete
set of frequent item sets. Firstly, one expects the condensed representation to
be, far, smaller than the complete set. One of the major problems in frequent
item set mining is the size of the result set. Condensed representations make this
problem far more manageable.

Data Mining in Inductive Databases 13

A second advantage is computationally. If the total costs of computing C
and generating F from C is lower than the costs for directly computing F , the
advantage is clear.

Perhaps the best known example of condensed representations is closed item
sets. A frequent item set is closed iff all its supersets have a lower support [27].
The fact that closed item sets form a condensed representation is straight forward
[6]. For an arbitrary item set, find the smallest closed item set that is a superset
of this set. If such a closed item set exists, the support of this closed item set is
the support of the given set. If no such closed item set exists, the given item set
is not frequent.

In many experiments is has been shown that closed item sets do exhibit both
potential advantages of condensed representations.

Combining Classifiers. Creating classifiers from sets of classifiers is a hot
topic in both pattern recognition and in machine learning. It even has its own
workshop series called Multiple Classifier Systems. In other words, there is far
too much research in the area to even attempt an overview in this paper. Rather
we point the reader to a recent survey article [37] and a recent book [17].

The result of the plethora of methods and algorithms is invariably a new
classifier that performs better than the underlying, base, classifiers.

4.2 From Local to Global

In the previous subsection, we stayed in the same model class, i.e. frequent item
sets and classifiers. A more general problem is whether we can use results from
one model class to discover models from another class.

Classification by Association. Probably the best known example of comput-
ing a global model from local patterns is the construction of a classifier from
association rules [19]. To built a classifier, we need a class attribute, hence, we
assume that our database of transactions contains such an attribute C. Clearly,
we can mine the set of all association rules that have (only) the class attribute
as their right hand side:

J → ci where J ⊆ I ∧ ci ∈ C

The two main problems in using the set of such association rules as a classifier
are:

– as always, overfitting; the solution is to prune the set
– different rules may fit a transaction, the solution is to built an ordered deci-

sion list.

For pruning, we can use, e.g., pessimistic error rate pruning. If an association rule
covers N transactions and makes E mistakes in classifying these transactions,
E/N is an estimate of the error rate of that rule as a classifier. The ”true” error
rate can be higher, of course, we can bound the true error through confidence
intervals:

P (m �∈ CFIδ(N,E)) ≤ δ

14 A. Siebes

If we denote the upper border of CFIδ(N,E) by Uδ(N,E), we ”know” with
100− δ/2% certainty that the ”true” error rate will be less than Uδ(N,E).

Now consider the two association rules

J1 → c1

J1 ∧ J2 → c2

It seems reasonable to prune J1 ∧ J2 → c2 if it has a higher pessimistic error
rate than J1 → c1. In other words, we prune a rule r, if it has a subrule r′ with
one item less that has a lower pessimistic error rate.

For the second problem, define an order on the association rules by: for two
rules r1 and r2, define r1 � r2 (r1 precedes r2) if:

– conf(r1) > conf(r2);
– conf(r1) = conf(r2) ∧ s(r1) > s(r2);
– conf(r1) = conf(r2) ∧ s(r1) = s(r2) and r1 is generated before r2.

So, we prefer rules on confidence (first) and support (second), the third criterion
is arbitrary and only necessary to define a complete order.

The algorithm considers each element of the pruned set of association rule
in this order. This element is added to the decision list of there is at least one
transaction left for it to classify and it classifies at least one of these transactions
correctly; see [19] for the details.

Densities from Frequent Sets. The collection of frequent item sets gives us
the support of all item sets that are frequent. It doesn’t tell us anything about
the support of an item set that is not frequent, except that this support is less
than the minimal support. However, the selectivity of a query is an important
measure for query optimisers in (relational) DBMSs. Hence, it is important to
estimate that selectivity. In other words, can we estimate the support of an
arbitrary item set based on the set of frequent item sets?

The key observation in [28] is that the frequent item sets can be seen as con-
straints on the probability distribution that underlies the database. Indeed, each
frequent item set with its count gives a marginal distribution of this underlying
distribution. In general, the constraints are not sufficient to completely deter-
mine the probability distribution. In other words, we need a criterion to pick
one of the possible distributions. The authors in [28] use the maximum entropy
principle [12] for this. That is, the choice is the least informative distribution
that satisfies the constraints.

In other words, for an arbitrary item set J , the estimated marginal distribution
is given by:

PM (J) = arg max
p∈P

H(p)

in which H(p) denotes as usual the entropy of p. The next step is the observation
that the max-ent distribution is a Markov Random Field [32]:

PM (J) = μ0

∏
Ji⊆J

μi

Data Mining in Inductive Databases 15

The iterative scaling algorithm can be used to determine the parameters of this
distribution subject to the constraints mentioned above; see [28] for full details.

Note that while we phrased the problem and the solution in terms of item
sets, the authors actually solve the problem for an arbitrary query; i.e., one can
ask for items that should not appear in the transaction.

4.3 Global to Local

In the previous subsection we looked at two examples in which local patterns
were used for the construction of global models. In this section we turn this
around, we take a global method and use it for local patterns.

Frequent Sets from EM. Frequent item sets are by definition local patterns,
that is, they describe only those transactions in which they occur. In other words,
it is very well possible that the database consists of different components such
that different collections of frequent item sets hold in the different components.
These different components could, e.g., be different days of the week or different
groups of customers. In [9] this possibility is investigated, first the transactions
are clustered using EM and then the frequent item sets are computed in each of
the clusters.

For the clustering, the data is seen as generated by a mixture of multivariate
Bernoulli distributions, i.e.,

P (x|Θ) =
k∑

j=1

πi

n∏
j=1

θ
xj
kj(1− θkj)(1−xj)

The parameters are estimated using the EM algorithm. The EM algorithm [21] is
a well-known algorithm for dealing with missing data. It is an iterative algorithm
with two main steps:

1. The E-step in which the expected value of the missing data is computed
using the current set of parameters.

2. The M-step: in which the maximum likelihood of the parameters is computed
using the current estimated value of the missing data items.

The missing data in this problem is, of course, the information to which cluster
each data point belongs.

After the clusters are determined, the authors compute the frequent item sets
in each of the clusters. In [9] it is shown that on some experimental data sets
the different clusters have markedly different collections of frequent item sets.

Association Rules from Bayesian Networks. A well-known problem of
association rule mining is that with high thresholds one only finds well-know
results and with low thresholds, the number of results is amazingly large. In [7]
we proposed to use Bayesian networks to generate far fewer association rules.
More precisely, Mambo discovers all association rules X → Y such that Y is a
singleton and X is a subset of a Markov Blanket of Y .

16 A. Siebes

To motivate this idea, recall the definition of conditional independence. Let
X,Y,Z be subsets of a set of random variables A on which a probability dis-
tribution P (A) is defined. Moreover, let X,Y be disjoint and non-empty. We
say that X is conditionally independent of Y given Z, denoted by X ⊥⊥ Y|Z, if
∀x ∈ DX,y ∈ DY, z ∈ DZ :

p(Y = y,Z = z) > 0 ⇒ p(X = x|Y = y,Z = z) = p(X = x|Z = z)

In other words, conditional independence is a form of irrelevance. If we know
Z, any further information about Y cannot enhance the current state of infor-
mation about X, i.e. given Z, Y becomes irrelevant to X.

If we reformulate association rules in the context of random variables and
probability distributions, the support of the rule Y = y → X = x becomes
p(Y = y,X = x), the confidence becomes p(X = x|Y = y), and the lift becomes
p(X = x|Y = y)/p(X = x).

If we know that X ⊥⊥ Y|Z, we have that:

p(X = x|Y = y,Z = z)/p(X = x) = p(X = x|Y = y)/p(X = x)

In other words, the lift doesn’t rise by adding knowledge about Y, Y is irrelevant
to X given Z. Or, if we have an association rule for X with Y and Z on the
lefthand side, we might as well filter Y out.

This is interesting if Z shields X from all other variables, i.e., if X ⊥⊥ A\ (Z∪
X)|Z. Because then we only have to consider association rules whose lefthand
side is within Z. All of this is even more interesting if Z is minimal, i.e, if we
remove an element from Z it no longer shields X from the rest. Such a minimal
set is called a Markov Blanket of X.

There are two obstacles to use this idea to discover association rules. Firstly,
we have a database rather than a probability distribution. Secondly, X may
have many Markov Blankets. In [7], we solve these problems using MCMC. The
Mambo algorithm generates the k most likely Markov blankets of a variable Y
and computes all association rules X → Y , in which X is a subset of one of
these k likely Markov blankets.

4.4 Conclusions

As already stated in the introduction, there is as of yet no structured approach,
let alone a theory, for this problem. For frequent item sets and constraints there
is a large body of work and a definite theory is in the making; see, e.g., [5]. For
all other cases the work is mainly anecdotical, i.e., there are papers that address
a particular instance of the problem but no concerted effort. This is not too
surprising given the vast amount of different model classes and algorithms to
induce such models.

Still, the problem is obviously relevant for inductive databases, if not for data
analysis in general. Moreover, not all combinations of different model classes
make sense. For example, the link between regression models and frequent item

Data Mining in Inductive Databases 17

sets seems weak5. So, a first step towards a theory for this problem may lie in a
systematic study: which combinations could be fruitful?

When the area has been charted in this way, the most promising combinations
could be studied systematically. Given that patterns are the most fundamental
contribution of the data mining field to data analysis, I would give preference to
combinations that involve patterns.

5 Models on Models

If models and patterns are to be first class citizens in an inductive database,
i.e., data, then we should be able to mine collections of models and patterns. I
first discuss two examples, then I’ll put this in the wider perspective of feature
construction.

5.1 Mining Models and Patterns

Bayesian Networks. I am not aware of any research on mining collections of
Bayesian networks, yet it is not too difficult to think of an application. Bayesian
networks are an increasingly popular tool in the analysis of micro-array data
[15]. The goal of this application is the, partial, reconstruction of, e.g., regulatory
networks in a cell.

The number of micro-array studies is growing fast, and so will the resulting
Bayesian networks. Given that micro-array data is rich in features (genes), poor
in data (relatively few arrays compared to the number on an array per experi-
ment) and high in variation these networks encode lots of uncertainty. Hence, it
makes sense to mine such a collection of networks. For example for interactions
that occur frequently in these networks.

Episodes. In one of our projects the aim is to infer phylogenetic knowledge
form developmental biology data [4]. In [4], the data is a sequence of events, like
the start of the development of the heart, in the development of an embryo of a
given species; see figure 7 for an example of the data.

The question is whether the different sequences for different species reflect the
evolutionary relationships between these species.

The evolutionary relationships are usually represented in phylogenetic trees.
Two species are children of the same node in that tree if both are evolution-
ary descendents of the same species, which is represented by that node [33]. A
common way to construct these trees is by clustering.

To cluster the developmental sequences, we needed a similarity measure on
such sequences. To define this measure, we first computed the frequent episodes
in the sequences. Next, we used these episodes as binary features of the species.
The similarity between two species was now defined using the Jacquard measure
on these binary features.

5 Now that I have given a particular example, I fully expect to be pointed to a paper
in which this link is exploited.

18 A. Siebes

time

0 1 3
Car_A

Axi_A Int_A Neu_A

0 1 3Axi_A Car_ARoe Deer

Pig

Int_A Kid_A

2 Kid_A

2 Neu_A Car_B

Car_CCar_E

4 5Car_B

Opt_A

Oti_A

4 5 Int_BOpt_A

Fig. 7. Developmental sequences

Pig

Roe Deer

Human

Clawed Toad

Smooth Newt

Mudpuppy

Giant Salamander

Spiny Dogfish

Sand Lizard

Chicken

Lapwing

Budgerigar

Brown Rat

Spectral Tarsier

TETRAPOD

AMNIOTA

MAMMALIA

ARTIODACTYLA

PRIMATES

AVES

DIAPSIDA

LISSAMPHIBIA

CAUDATA

(Literature) (Clustering result)

Fig. 8. The result tree in comparison

Simple hierarchical clustering using this similarity measure resulted in a tree
that was almost an exact copy of the accepted phylogenetic tree for the species
in our experiments; see figure 8 and [4] for further details.

5.2 Feature Construction

The episode example in the previous subsection used patterns as features. That
is, pattern discovery is used as a feature construction mechanism. Feature con-
struction has a long tradition in data analysis. Even in something simple as
regression it is standard to add mixture terms like x1x2 for a better fit.

Data Mining in Inductive Databases 19

One of the major reasons for feature construction in data mining is the, almost
exponential, rise of new data types. Mostly, these types do not fit automatically
the input requirements of the data mining algorithms we love and cherish. Hence,
the data is transformed to some feature space that does meet these requirements.
For example,

Text: Is often turned into a vector of keywords [38]. Standard algorithms can
be applied to this new representation.

Pictures: As pioneered by multi-media information retrieval, features such as
colour histograms and textures are computed for further processing [39].

Time Series: Represent a huge area of research [18]. Examples of features are
Fourier coefficients [2] and wavelet coefficients [36].

Relational Mining: Aggregates are a popular way to incorporate the data
from related tables, whether as a means to propostionalize or on the fly
[16, 14]. In both cases, the aggregates are, of course, newly constructed fea-
tures.

Note that this kind of feature construction is in a sense ad hoc. The features are
hand-crafted for the job; the data analyst decides what the useful features are.
This is not, of course, to say that they are not grounded in solid theory.

The other big boost in feature construction is due to the rapid rise of kernel
methods [34]. For, a kernel is nothing less than a smart way to transform the
data into a Hilbert space for no other purpose than to allow processing with
standard analysis approaches. This kernel approach is to a lesser extend just as
ad hoc as the examples mentioned above. Still kernels have to be constructed. It
is less ad hoc, however, since there is, e.g., theory that allows one to construct
kernels from other kernels. Moreover, after the kernel has been designed, the rest
of the toolbox carries over automatically.

5.3 Patterns as Features

Using data mining for feature construction is a completely different approach. It
is not the data analyst who decides what the good features are, the algorithms
discover these features from the data. One could argue that this approach is not
that different from the others. For, the data analyst still has to decide for which
kind of patterns to mine.

However, I argue that it is rather different for two reasons:

– Firstly, there is no a priori reason to prefer one kind of pattern over the other.
One can simply try all kinds of patterns and let the data decide whichever
fits best.

– Secondly, this approach sees feature construction as data mining. Not as a
separate phase that has to precede the actual mining of the data.

There is, of course, one major potential drawback of this approach to feature
construction, viz., the sheer number of patterns that are usually discovered.

Given that it is not unusual in frequent item setmining to discover more frequent
item sets than there are transactions in the database, thismay seeman insurmount-
able problem. However, this only means that we have to single out those patterns

20 A. Siebes

that describe the data best. In a recent paper [35] we used MDL to achieve this:
the best set of frequent item sets is that one that compresses the database best.

The potential advantages of this approach are possibly as big as the potential
drawback, if not bigger. Firstly because many of the existing approaches ulti-
mately treat the data as numeric data. Patterns on the other hand work as well,
if not better, for non-numeric data. Secondly, patterns as features seems to offer
so much more than aggregates for relational data mining. The number of bank
accounts is just a very simple pattern. More expressive pattern languages should
allow for better results.

Finally, this approach seemsunavoidable in an inductivedatabase context. If one
has a large collectionofmodels and/orpatterns in adatabase theyhave tobemined.
Just as data mining started because there were large amounts of data available.

5.4 Conclusions

Like in the previous section, there is only some scattered research in this area. De-
veloping a theory for these kinds of problems is going to be hard. However, it is an
undeniable necessity for an inductive database. Moreover, within a restricted area,
viz., mining on patterns progress may be simpler than for the whole problem.

6 Future Research

Clearly, all questions I discussed in this paper pertain to problems I feel have to
be solved before we have a truly inductive database. This doesn’t mean, however,
that all of them are equally urgent or difficult (nor does it mean that they are
all there is). Given the conclusions I formulated I rank their urgency as follows:

Mining on Models and Patterns: Firstly because this has to be supported if
models and patterns are supposed to be first class citizens. Secondly because
of its potential role in relational data mining. As an aside, I haven’t discussed
the role of relational data mining in inductive databases. Clearly, this is
a very important aspect. Databases have more than one table, inductive
databases have to deal with this reality. In other words, inductive databases
should include relational data mining.

Within this domain, I rank mining on patterns as the most promising
field. It is relatively small and the potential benefit is large.

Models for Models: Ranked only second because it is a far harder problem.
Firstly, because it requires a probabilistic framework. Many models are prob-
abilistic, so if we want to use those models to discover other models, we have
to deal with the probabilistic aspects. So, combined with our previous point,
it means we need a probabilistic relational model. While there is some good
work in this area [31], it hasn’t been solved.

The second reason why this is a hard problem is the sheer size of the
problem. There are many different kinds of models and patterns. The number
of combinations is, of course, far larger again! But, as already stated, not all
combinations make sense.

Data Mining in Inductive Databases 21

Like for the previous point, I would rank combinations that involve pat-
terns highest. The reason is the complementarity of models and patterns in
our “definition” of patterns. If patterns are deviations from a model, the
interaction between models and patterns requires deep understanding.

Lifting the Algebra: This is only ranked third because after the initial anal-
ysis in this paper I am afraid that there are not too many positive results
for this problem.

Perhaps more progress is possible if we view the third problem as a special
case of the second one. For example, does knowledge of the frequent items sets
on tables R1 and R2 help in computing the frequent item sets on table R1 �� R2?

Clearly, for this simple example, the answer is affirmative. For, if we know that
the item set with the largest support on Ri has support Li, we need to find all
item sets with support min-sup

Li
on the “other” table. Given that Li comes from

the already discovered set of frequent item sets and that this already discovered
set can be used as a starting point for the lower support computation, the gain
is clear. Again, an interesting area for further research.

So, where does this leave us? I hope that research in inductive databases
will go beyond constraints; however useful constraints are! For me, mining on
patterns seems the most interesting direction. Together with my group I will
certainly continue working in this area.

Acknowledgements. For the help in writing the “lifting” section, I am grateful
for discussions with and help from Pedro Larañaga, Linda van der Gaag and Ad
Feelders. Many of the thoughts in this paper have been shaped by numerous
discussions with equally numerous colleagues, to many to name I am afraid.
Both the current and previous members of my group and the members of the
Cinq consortium are certainly among them.

Furthermore, I am grateful to the editors for their invitation and for the useful
comments they gave me on the draft version of this paper. Finally, I thank Paul
Taylor for his commutative diagram package that made producing the diagrams
in this paper into a very simple exercise.

References

1. R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets
of items in large databases. In Proc. ACM SIGMOD conference, pages 207–216,
1993.

2. Rakesh Agrawal, Christos Faloutsos, and Arun N. Swami. Efficient similarity search
in sequence databases. In D. Lomet, editor, Proceedings of the 4th International
Conference of Foundations of Data Organization and Algorithms, pages 69–84.
Springer Verlag, 1993.

3. Andrea Asperti and Giuseppe Longo. Categories, Types, and Structures. MIT
Press, 1991.

4. Ronnie Bathoorn and Arno Siebes. Discovering (almost) phylogentic trees from
developmental sequences data. In Knowledge Discovery in Databases, PKDD2004,
volume 3202 of Lecture Notes in AI.

22 A. Siebes

5. Francesco. Bonchi and Claudio Lucchese. On closed constrained frequent pattern
mining. In Rajeev Rastogi, Katharina Morik, Max Bramer, and Xindong Wu,
editors, Proceedings of the Fourth IEEE International Conference on Data Mining
(ICDM’04), pages 35–42, 2004.

6. Jean-François Boulicaut and Artur Bykowski. Frequent closures as a concise rep-
resentation for binary data mining. In Knowledge Discovery and Data Mining,
Current Issues and New Applications, 4th Pacific-Asia Conference, PADKK 2000,
pages 62–73, 2000.

7. Robert Castelo, Ad Feelders, and Arno Siebes. Mambo: Discovering association
rules based on conditional independencies. In Advances in Intelligent Data Analy-
sis, 4th International Conference, IDA 2001, pages 289–298. Springer Verlag, 2001.

8. David J. Hand. Pattern detection and discovery. In Pattern Detection and Discov-
ery, volume 2447 of Lecture Notes in AI, pages 1–12. Springer Verlag, 2002.

9. Jaakko Hollmén, Jouni K. Sepp anen, and Heikki Mannila. Mixture models and
frequent sets: Combining global and local methods for 0-1 data. In Proc. SIAM
Conference on Data Mining (SDM) 2003, 2003.

10. Pedrito Maynard-Reid II and Urszula Chajewska. Aggregating learned proba-
bilistic beliefs. In Proceedings of the 17th Conference in Uncertainty in Artificial
Intelligence, pages 354–361. Morgan Kaufmann, 2001.

11. Tomasz Imielinski and Heikki Mannila. A database perspective on knowledge
discovery. Communications of the ACM, 39(11):58–64, 1996.

12. E.T. Jaynes. Probability Theory: The Logic of Science.
13. Hillol Kargupta and Philip Chan, editors. Advances in Distributed and Parallel

Knowledge Discovery. MIT Press, 2000.
14. Arno J. Knobbe, Marc de Haas, and Arno Siebes. Propositionalisation and ag-

gregates. In Luc De Raedt and Arno Siebes, editors, Principles of Data Mining
and Knowledge Discovery (PKDD), volume 2168 of Lecture Notes in Computer
Science, pages 277–288. Springer Verlag, 2001.

15. Isaac S. Kohane, Alvin T. Kho, and Atul J. Butte. Microarrays for an Integrative
Genomics. Computational Molecular Biology. MIT Press, 2003.

16. . Krogel, S. Rawles, F. Zelezny, P. Flach, N. Lavrac, and S. Wrobel. Comparative
evaluation of approaches to propositionalization. In Tamas Horvath and Akihiro
Yamamoto, editors, Proceedings of the 13th International Conference on Inductive
Logic Programming (ILP’2003), pages 194–217. Springer-Verlag, October 2003.

17. Ludmila Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. John
Wiley & Sons, 2004.

18. Mark Last, Abraham Kandel, and Horst Bunke, editors. Data Mining in Time
Series Databases. World Scientific, 2004.

19. Bing Liu, Wynne Hsu, and Yiming Ma. Integrating classification and association
rule mining. In Proc. of the ACM KDD conference, pages 80–86, 1998.

20. H. Mannila, H. Toivonen, and A.I. Verkamo. Discovery of frequent episodes in
event sequences. volume 1, pages 259–289, 1997.

21. Geoffrey J. McLachlan and Thriyambakam Krishnan. The EM Algorithm and
Extensions. Wiley Series in Probability and Statistics. John Wiley & Sons, 1997.

22. Katharina Morik, Jean-François Boulicaut, and Arno Siebes. Preface. In Local
Pattern Detection, volume 3539 of Lecture Notes in AI. Springer Verlag, 2005.

23. S. Naqvi and S. Tsur. A Logical Language for Data and Knowledge Bases. Com-
puter Science Press, 1989.

24. Richard E. Neapolitan. Learning Bayesian Networks. Prentice Hall, 2003.

Data Mining in Inductive Databases 23

25. Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex Pang. Exploratory
mining and pruning optimizations of constrained associations rules. In Proc. ACM
SIGMOD conference, 1998.

26. Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex Pang. Exploratory
mining and pruning optimizations of constrained associations rules. In Proceedings
of 1998 ACM SIGMOD International Conference Management of Data, pages 13–
24, 1998.

27. Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Discovering fre-
quent closed itemsets for association rules. In Proceedings of 7th ICDT, pages
398–416, 1999.

28. Dmitry Pavlov, Heikki Mannila, and Padhraic Smyth. Beyond independence: Prob-
abilistic models for query approximation on binary transaction data. Technical
Report UCI-ICS TR-01-09, UC Irvine, 2001.

29. Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kauffman, 1997.

30. Luc De Raedt. A perspective on inductive databases. SIGKDD Explorations,
4(2):69–77, 2000.

31. Luc De Raedt and Kristian Kersting. Probabilistic logic learning. SIGKDD Ex-
plorations, 5(1):31–48, 2003.

32. H̊avard Rue and Leonhard Held. Gaussian Markov Random Fields, volume 104 of
Monographs on Statistics and Applied Probablity. Chapman & Hall/CRC, 2005.

33. Charles Semple and Mike Steel. Phylogenetics, volume 24 of Oxford Lecture Series
in Mathematics and its Applications. Oxford University Press, 2003.

34. John Shaw-Taylor and Nello Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

35. Arno Siebes, Jilles Vreeken, and Matthijs van Leeuwen. Item sets that compress.
In Proceedings of the SIAM conference on Data Mining (SDM), 2006.

36. Zbyszek Struzik and Arno Siebes. The haar wavelet transform in the time series
similarity paradigm. In Jan M. Zytkow and Jan Rauch, editors, Principles of Data
Mining and Knowledge Discovery (PKDD), volume 1704 of Lecture Notes in AI,
pages 12–22. Springer Verlag, 1999.

37. Giorgio Valentini and Francesco Masulli. Ensembles of learning machinesensembles
of learning machines. In Proceedings of the 13th Italian Workshop on Neural Nets-
Revised Papers, pages 3–22. Springer Verlag, 2002.

38. Shalom M. Weiss, Nitin Indurkhya, Tong Zhang, and Fred J. Damerau. Text
Mining. Springer Verlag, 2005.

39. Osmar R. Zaiane, Simeon Simoff, and Chabane Djeraba, editors. Mining Multi-
media and Complex Data, volume 2797 of Lecture Notes in AI. Springer Verlag,
2003.

Mining Databases and Data Streams
with Query Languages and Rules

Carlo Zaniolo

Computer Science Department,
UCLA, Los Angeles, CA 90095

zaniolo@cs.ucla.edu

Abstract. Among data-intensive applications that are beyond the reach
of traditional Data Base Management Systems (DBMS), data mining
stands out because of practical importance and the complexity of the
research problems that must be solved before the vision of Inductive
DBMS can become a reality. In this paper, we first discuss technical de-
velopments that have occurred since the very notion of Inductive DBMS
emerged as a result of the seminal papers authored by Imielinski and
Mannila a decade ago. The research progress achieved since then can be
subdivided into three main problem subareas as follows: (i) language (ii)
optimization, and (iii) representation. We discuss the problems in these
three areas and the different approaches to Inductive DBMS that are
made possible by recent technical advances. Then, we pursue a language-
centric solution, and introduce simple SQL extensions that have proven
very effective at supporting data mining. Finally, we turn our attention
to the related problem of supporting data stream mining using Data
Stream Management Systems (DSMS) and introduce the notion of In-
ductive DSMS. In addition to continuous query languages, DSMS pro-
vide support for synopses, sampling, load shedding, and other built-in
functions that are needed for data stream mining. Moreover, we show
that Inductive DSMS can be achieved by generalizing DSMS to assure
that their continuous query languages support efficiently data stream
mining applications. Thus, DSMS extended with inductive capabilities
will provide a uniquely supportive environment for data stream mining
applications.

1 Introduction

Data Base Management Systems (DBMS) and their enabling technology have
evolved successfully to deal with most of the data-intensive application areas
that have emerged anew during the last twenty years. For instance, in response
to the growing importance of decision-support applications, relational DBMS
and SQL were quickly extended to support OLAP queries—a remarkable exploit
from both technical and commercial viewpoints. On the other hand, there have
also been significant failures, with data mining applications representing the
most egregious of such failures. Therefore, databases today are still mined using
primarily a cache-mining approach, whereby the data is first moved from the

F. Bonchi and J.-F. Boulicaut (Eds.): KDID 2005, LNCS 3933, pp. 24–37, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Mining Databases and Data Streams with Query Languages and Rules 25

database to a memory cache, which is then processed using mining methods
written in a procedural programming language. Indeed, most mining functions
cannot be expressed efficiently using SQL:2003, which represents the standard
query language of DBMS.

Research on Inductive Inductive DBMS aims at changing this state of affairs
and make it easy to mine databases by their query languages. The emergence
of Inductive DBMS as a well-defined research area can be traced back to the
seminal papers by Imielinski and Manilla [1, 2] who introduced the lofty notion
of a DBMS where complex mining tasks can be expressed with ease using the
query language of the system1. According to [2], Inductive DBMS should also
assure efficient execution of such high-level mining queries via powerful query
optimization techniques—although the enabling technology for such a task was
not available at the time2.

Early attempts to realize the lofty notion of Inductive DBMS have produced
mining languages such as MSQL[3], DMQL[4] and the Mine Rule [5]. These
projects propose SQL extensions to specify the data to be mined and the kind of
patterns to be derived, along with other parameters needed for the task, such the
support and confidence required. As discussed in a comprehensive comparative
study [6], these projects have made a number of contributions, by exploring and
demonstrating some of the key features required in a Inductive DBMS, including

(i) the ability of specifying constraints, meta-patterns, and concept hierarchies
to sharpen the search process,

(ii) the ability to apply the derived rules to the original data for verification and
analysis (crossing over),

(iii) the closure property whereby the query language can be used to operate on
the results produced by the mining query.

The research contributions brought by these approaches have not led to signifi-
cant commercial deployments, because of practical limitations. A first limitation
is that these approaches are primarily intended for association rule mining, al-
though DMQL consider other patterns besides association rules.

A second and more serious concern is that of performance: the projects dis-
cussed in [3, 4, 5] do not claim to have achieved performance levels that are com-
parable to those achievable with the cache-mining approach, nor they claim to
have identified a query-optimization approach that can be reasonably expected
to take them there. This in line with the view of Imielinski and Manilla2 that
sophisticated optimizers are needed to achieve good performance and develop-
ing such technology represents a long-term research challenge for which no quick
solution should be expected. Furthermore, experience with query optimizers has
shown that it is very difficult to extend relational optimizers to handle more pow-
erful constructs, such as recursive queries, or richer data models and their query
1 ‘There is no such thing as real discovery, just a matter of the expressive power of

the query languages’ [2].
2 ‘KDD query optimization will be more challenging than relational query optimization

... It took more than 20 years to develop efficient query optimization and execution
methods for relational query languages’ [2].

26 C. Zaniolo

languages, i.e., XML and XQuery. Therefore, optimizers for data mining queries
require novel techniques, not just extensions of relational optimizer technology.
Such a task could take many years, although progress on this difficult problem
has been achieved in the last few years [7, 8, 9, 10]. Once these techniques will be
incorporated into systems supporting declarative mining queries, the lofty vision
of [2] will then be realized, at least for associative rule mining.

In order to provide data mining functions to their users, commercial database
vendors are instead taking a quite different approach. Typically, vendors have
been implementing a suite of data mining functions on top of their DBMS, along
with graphical interfaces to drive these packages [11, 12, 13]. While only providing
a predefined set of built-in mining functions, the Microsoft DB serve is however
achieving a closer integration and better interoperability of the mining task with
the SQL query task, by using the descriptive+predictive mining model of OLE
DB DM [13]. Thus the descriptive task generates an internal representation (a
mining model) as a special table that is populated (learned) by executing the
mining task on the training data. Then, a special operator called prediction join
is provided that can be used to predict unknown attribute values for new data
[13]. It is also possible to inspect the descriptive model and export it into an
XML-based representation called PMML (Predictive Model Markup Language).
PMML is a markup language proposed to represent statistical and data mining
information [14].

Therefore, OLE DB DM goes beyond the mining-language approach by ad-
dressing the need to support the multiple steps of the DM process with well-
defined representations linking the various steps. Ideally, this should lead to the
notion of open Inductive DBMS, where, for instance, descriptive models can
be imported into the system and used for prediction (or exported and used for
predictive tasks in a second system).

In addition to the mining-language approach and the DM approach of OLE
DB, there is also a third approach that we will call the middle-road approach.
This offers interesting promises both in terms of mining data bases and data
streams, and is discussed in the next two sections.

2 Query Languages and Data Mining

The mining-language approach proposed in [3, 4, 5] defines a very ambitious high-
road path toward Inductive DBMS, since users only need to provide high-level
declarative queries specifying their mining goals. Then, the Inductive DBMS
optimizer is left with the responsibility of selecting an algorithm to accom-
plish those goals—a task that, in general, exceeds the capabilities of current
technology.

At the opposite end of the spectrum, we find the low-road approach discussed
in the prize-winning paper presented in [15]. In said study, a task force of re-
searchers with deep expertise on mining methods and the IBM DB2 O-R DBMS
tried to implement efficiently the APriori algorithm, exploring several implemen-
tation alternatives that only use the DBMS as is, using the standard SQL version
supported by DB2. An acceptable level of performance was achieved through the

Mining Databases and Data Streams with Query Languages and Rules 27

Table 1. The relation PlayTennis

RID Outlook Temp Humidity Wind Play
1 Sunny Hot High Weak No
2 Sunny Hot High Strong Yes
3 Overcast Hot High Weak Yes
...

Table 2. A Column-oriented representation for PlayTennis

RID Column Value Dec
1 1 Sunny No
1 2 Hot No
1 3 High No
1 4 Weak No
2 1 Sunny Yes
2 2 Hot Yes
2 3 High Yes
2 4 Strong Yes
...

use of specialized join techniques and user-defined functions (UDFs), at the price
of excessive difficulties in programming and debugging [15]. We will characterize
the approach taken in [15] as a ‘low-road’ path toward Inductive DBMS. While
the work presented in [15] established the inadequacy of SQL in supporting
complex data mining algorithms such as Apriori, it provided no clear indication
how to proceed to overcome these inadequacy.

Once we compare the high-road approach against the low road we see that
the first makes unrealistic demands upon the system, while the second makes
unrealistic demands on the users. Given this situation, it is only natural to
pursue middle-road approaches that explore extensions of SQL and DBMS that
are realizable with current technology and make the task of writing mining
algorithms simple for common mortals. We next describe the ATLaS system
that is taking such middle-road path to Inductive DBMS.

As described by Arno Siebes in his invited talk [16], data mining success
stories in the real world, frequently employ the simplest mining methods, e.g.,
Naive Bayesian Classifiers (NBCs). NBCs are also significant for the very subject
of this paper, since they provide a unique example of on data mining algorithm
that current DBMS can support as well as full-fledged Inductive DBMS would.

Take for instance the well-known Play-Tennis example of Table 1: we want to
predict the value of Play as a ‘Yes’ or a ‘No’ given a training set consisting of
tuples similar to the three shown in Table 1.

The first step is to convert the training set into column/value pairs whereby
the first two tuples in Table 1 are now represented by the eight tuples shown in
Table 2.

28 C. Zaniolo

This verticalization can be implemented using a table function, which is a very
useful SQL:2003 construct now supported by most DSMS. From this representa-
tion, we can now build a Bayesian classifier by simply counting the occurrences
of Yes and No with a statement as follows:

Example 1. Disassemble a relation into column/value pairs.
SELECT Column, Value, Dec, count(Dec) as mycount

FROM traningset
GROUP BY Col, Value, Dec

We can then add up the counts for each column, and use it to normalize the
values of mycount (by dividing by the total number of ‘Yes’ and ‘No’). Finally,
we take the absolute value of the log of the results and thus obtain a descriptor
table as follows:

DescriptorTbl(Col: int, Value: int, Dec: int, Log: real)

Now, the set of tuples submitted for prediction will also be collected in a
table called, say TestTuples having the same format as Table 2, except that the
column Dec is missing. Then, the Naive Bayesian classifier is implemented using
the results of the following query:

Example 2. Probabilities for each tuple to be predicted
SELECT t.RID, d.Dec, sum(d.Log)
FROM DescriptorTbl AS d, TestTuples AS t
WHERE d.Val=t.Val AND d.Col=t.Col

GROUP BY t.RID, d.Dec

Thus, for each test tuple, and each class label we multiply (sum the logs of) the
relative frequencies for each column value supporting this class label. The final
step would consist in selecting for each RID the class label with the least sum,
a step that in SQL requires finding first the min value and then the columns
where such min value occurs (such a min maximizes the probability since we use
absolute values of logarithms).

Observe that so far, we have only described the core descriptive and predictive
tasks and not discussed other tasks such as data preparation, testing the model
accuracy, and boosting it. However, these tasks can normally be expressed by
rather simple SQL queries on our basic relational representation. For instance, if
we want to build an ensemble of classifiers, we only need to add to the descriptor
table a new column containing the classifier name: then voting operations can be
reduced to counting the number of individual classifiers for each (i.e., grouped
by each) Dec value and then selecting the decision supported by most votes.
Here again relational tables are used to describe both the data and the induced
model.

The example of Naive Bayesian Classifiers illustrates the superior computa-
tional environment that DBMS can bring to the data mining process once their
query languages are capable of expressing such applications. Therefore, a very
natural middle-road approach can be that of preserving the basic relational rep-
resentation for the data sets and the induced models, but providing extensions
to SQL:2003 to turn it into a more powerful language—one that is capable of

Mining Databases and Data Streams with Query Languages and Rules 29

expressing complex mining algorithms. In the past, aggregates extended with
more general group by constructs enabled SQL-compliant DSMS to support
decision support functions via OLAP and data cubes. More recently, in our
ATLaS project, we have shown that User-Defined Aggregates (UDAs) natively
defined in SQL can turn SQL into a powerful (Turing-complete [17]) language
for data mining applications [18].

The ATLaS middle-road approach allows users to write data mining algo-
rithms in SQL extended with natively defined UDAs. For instance, we will now
write a simple UDA that computes the correct classification from a table storing
the results of Example 2. If we were restricted to standard SQL, things would be
more complex, since we would need to nest a statement that finds the minimum
into another statement that finds all the points where this occur. Moreover, to
break ties, we will have to find again the min (or max) among the such points
(ordered by lexicographically). Alternatively, we can use the following UDA:

Example 3. Defining the standard aggregate minpoint

AGGREGATE mincol(inCol Int, inValue Real) : Int
{ TABLE current(CrCol Int, CrValue Int);

INITIALIZE : {
INSERT INTO current VALUES (inCol, inValue);

}
ITERATE : {

UPDATE current SET CrCol=inCol, CrValue=inValue;
WHERE CrValue <= inValue

}
TERMINATE : {

INSERT INTO RETURN SELECT CrCol FROM current;
}

}

In this case, we have an internal table which only contains one tuple that is
always updated to the incoming inCol, inValue pair when inValue is less or
equal to the current minimum (but in a situation where we want to find the
top K values/points our table would instead contain K tuples). Observe the
stream-oriented computation is specified in the three steps: (i) when the first
tuple arrives (initialize), (ii) when the successive tuples arrive (iterate), and
(iii) after the input is exhausted (terminate). A number of commercial DBMS
support UDAs where the computations in these three states can be defined in an
external procedural language. However, as shown by our simple example, these
computations can be naturally defined in SQL itself, an approach that has three
important advantages:

– UDAs can be invoked from other UDAs,
– UDAs can access the database tables besides their internal tables, and
– any impedance mismatch problem is eliminated.

In a nutshell, we obtain a rich programming environment, which brings native
extensibility and Turing-completeness to SQL [17] which can be used in a number

30 C. Zaniolo

of other applications besides data mining. For data mining, however, UDAs
afford the ability of expressing concisely and efficiently all data mining methods,
including Apriori [18].

For instance, a basic-decision tree classifier might start by computing the
gini index (or entropy gain) instead of the probabilities used for NBCs. Then, to
decide where to split, we will have to find where a minimum occurs. For instance,
for a multiway split we will count for each column and each value in the column
the number of Yes and No, and we use those to compute a gini index. If store
the pairs (column, gini-value) in a temporary table, the next step consists in
selecting the column where we have the least gini index by calling the UDA of
Example 3, above.

This would generate the first level of nodes in our decision tree. We can now
partition the training set according to these node numbers, and then we can call
the same UDA grouped by this node number. Thus, a classifier can be written
as a UDA consisting of fourteen ATLaS-SQL lines [18].

Not surprising, given the experience described in [15], writing an efficient im-
plementation of Apriori proved a tougher test, one that required forty-five lines of
ATLaS-SQL code. In terms of performance, the key issue proved to be the support
for data structures such as prefix trees, which we were able to support via the use
of in-memory tables and SQL reference data types that, for in-memory tables, can
be used to point to other tuples [18]. The performance and scalability so obtained
are comparable to those obtainable with the cache-mining approach, and normally
better than those of java-based data mining libraries [19].

The ability of working directly with SQL represents a practical advantage of
this approach over others using new special algebras [20]. Moreover, the stream-
oriented definition mechanism of UDAs makes them particularly effective at
mining data streams, as discussed next.

3 Inductive Data Stream Management Systems

There is a great deal of interest in managing high volumes of information that
is exchanged as data streams that, because of high arrival rates or immediate
response requirements, cannot be managed via DBMS. Therefore, Data Stream
Management Systems (DSMS) are being developed to manage streaming infor-
mation by supporting data streams applications via continuous queries [21]. In
particular, data stream mining applications have been the focus of much recent
interest [22, 23, 24] raising the issue of designing the best DSMS to support such
applications. Therefore, in this section, we introduce the notion of an Inductive
DSMS which falls naturally at the intersection of the two research areas. In most
general terms, we will define Inductive DSMS as DSMS designed to supports and
facilitate the task of data stream mining.

While many approaches are possible to the design of management systems that
support publish & subscribe OR data streams, a very popular research approach
consists in using query languages and operators similar to those of databases
[21, 25, 26, 27, 28] and extend them with operators and constructs specifically

Mining Databases and Data Streams with Query Languages and Rules 31

designed for data streams. Typical extensions include windows or other synoptic
structures, sampling, and load shedding [21, 25]. Moreover, Inductive DSMS are
often used to support mining algorithms that are similar to those of Inductive
DBMS, as demonstrated by the fact that stream mining algorithms are often
fast&light, one-pass adaptation of the original algorithms designed to work on
stored data. Therefore, approaching Inductive DSMS and Inductive DBMS as
two closely related technical topics is natural and likely to be beneficial from a
research viewpoint. In terms of practical issues, however, we see that the two
areas are different and face somewhat complementary concerns, which are briefly
discussed next.

The fact that DSMS are far from the level of maturity and standardization
achieved by DBMS represents a clear disadvantage for Inductive DSMS, which
however, also enjoy major advantages, because of the number of built-in func-
tions they support, and because cache mining might no longer represent an
appealing alternative for data streams. For instance, the typical approach used
for mining data streams consists in dividing the incoming data into windows.
By comparing the statistics of successive windows we can (i) detect concept
shift/drift, and when none is detected (ii) use bagging and boosting techniques
to improve the predictive accuracy of our model [23, 24]. DSMS support a rich
assortment of window constructs that can be utilized very effectively in these
tasks [29, 27, 21].

Sampling represents another basic function that is useful for mining data
streams [30] and is well-supported in DSMS [26]. For instance, sampling can be
used to find the center of clusters [31] or frequent item sets for mining association
rules [32]. Moreover, building classifier ensembles via multiple samples of the data
can result in improved accuracy [33]. Also, interesting techniques have been pro-
posed to improve the accuracy of aggregates and mining methods on sample data
using past information on the stream behavior [34]. In principle, a cache-mining
programmer could code these sampling techniques or import them from some li-
brary, but in practice, an Inductive DSMS that supports windows and sampling as
built-ins could be hard to resist for our opportunistic data stream miner.

The reasons for using an Inductive DBMS become even more compelling as
we move from the language level to the system level, since DSMS provide unique
functions such as load balancing, scheduling, and shedding, which are designed
to assure quality-of-service and prompt response in the presence of multiple users
and bursty arrivals [35]. By taking advantage of computing grids, or distributed
computing platforms, DSMS can provide highly reliable, non-stop service [36].
Thus data mining applications seeking uninterrupted service, reliability, robust-
ness, and sharing by multiple applications will need Inductive DSMS (unlike
database mining applications that can live without the support for transaction,
recovery, and data independence provided by DBMS).

In summary, Inductive DBMS can deliver to the data stream miner great
practical benefits—possibly even greater than those of Inductive DBMS in tra-
ditional mining applications. Moreover this research area also offers interesting
opportunities, since techniques and solutions developed for Inductive DBMS

32 C. Zaniolo

can be naturally transferred to Inductive DSMS and vice versa. In particular,
we have extended the middle-road approach to Inductive DBMS described in
the previous section and applied to Inductive DSMS, by extending the UDAs of
ATLaS with powerful primitives for windows, sampling, and time-stamp man-
agement. The Expressive Stream Language (ESL) so obtained, can express ev-
ery non-blocking function expressible by a Turing machine and it is supported
efficiently in our Stream Mill prototype [37]. In data streams applications, win-
dows are often used in conjunction with aggregates, to overcome their blocking
behavior and to summarize the past history of the data stream. Unlike other
DSMS that only support windows on built-in aggregates, ESL supports a vast
assortment of windows on arbitrary UDAs. For instance, a classifier UDA can
be called on tumbles, i.e., windows that partition the input stream into disjoint
segment, and the results produced by few recent tumbles can be used to build
a classifier ensemble [38]. A sliding window aggregate is instead one that recom-
putes the value of the aggregate when new tuples arrive or leave the window,
using differential maintenance techniques. The development of such techniques
for the various mining methods represent an interesting topic of ongoing re-
search. In the following example we show how the DBscan algorithm can be con-
cisely written in ESL and applied to an incoming stream partitioned into tumble
windows.

Density-Based Clustering. In our application, we have a stream of points in a
two-dimensional space. In order to study the data and distribution changes, we (i)
partition the stream intowindows of equal size, (ii) cluster the data in eachwindow,
and (iii) compare the sizes of the different clusters in successivewindows, alongwith
any appearance of new clusters or disappearance of old ones. For clustering, we em-
ploy the density-based clustering algorithm DBScan [39]. The density conditions
is defined by the fact that within a radius of eps, we find at least minPts points;
thus, points that occur in a dense area are assigned to the same cluster, while points
that fall in a sparse area are instead classified as outliers.

The partition of the incoming stream into windows and the execution of DB-
scan on each window are accomplished by the following ESL statement that calls
the dbscan aggregate on input data stream:

Stream of Points(Xvalue, Yvalue, TimeStamp).

Example 4. Applying dbscan with minPts = 10 and eps = 50
/*call dbscan with minPts = 10 and eps = 50 */

SELECT dbscan(Xvalue, Yvalue, 0, 10, 50)
OVER(ROWS 999 PRECEDING SLIDE 1000)

FROM Stream of Points

Here 10 and 50 are the example values we assign to two important parameters for
the DBScan Algorithm, eps and minPts, respectively. The third argument is
for book-keeping purposes. Observe that since the size of the slide is the same as
that of the window, this is known as a tumble. Therefore the Stream Mill system
will use the base definition of DBscan, shown below. Given the two parameters
eps and minPts, the DBScan algorithm works as follows: pick an arbitrary

Mining Databases and Data Streams with Query Languages and Rules 33

point p and find its neighbors (points that are less than eps distance away). If
p has more than minPts neighbors then form a cluster and call DBScan on all
its neighbors recursively. If p does not have more than minPts neighbors then
move to other un-clustered points in the database. Note, this can be viewed as
a depth-first search.

AGGREGATE dbscan(iX Real, iY Real, Flag Int, minPt Int, eps Int): Int
{ TABLE closepnts(X2 real, Y2 real, C2 Int) MEMORY;

INITIALIZE: ITERATE: {
/* Find neighbors of the given point */
INSERT INTO CLOSEPNTS SELECT X1, Y1, C1 FROM points
WHERE sqrt((X1-iX)*(X1-iX) + (Y1-iY)*(Y1-iY)) < eps;

/* If there are more than minPt neighbors, form a cluster */
UPDATE clusterno SET Cno= Cno+1 /* new cluster number*/
WHERE Flag=0 AND SQLCODE=0 /* A new cluster */
AND minPt < (SELECT count(C2) FROM closepnts);

/* Assign these neighboring points to this cluster */
UPDATE points SET C1 = (SELECT Cno FROM clusterno)
WHERE points.C1=0 AND
EXISTS (SELECT S.X1 FROM closepnts AS S

WHERE points.X1=S.X2 AND points.Y1=S.Y2)
AND minPt < (SELECT count(C2) FROM closepnts);

/* Call dbscan recursively */
SELECT dbscan(X2, Y2, 1, minPt, eps)
FROM closepnts, points
WHERE X1 = X2 AND Y1=Y2;
DELETE FROM closepnts;

}
}; /*end dbscan*/

This density-based clustering was part of a demo presented at the ACM SIG-
MOD 2005 conference of the Stream Mill System that supports very powerful
continuous queries on data streams and applications that span both data streams
and databases using a client-server architecture [38]. Another data mining ap-
plication demonstrated on that occasion, was an ensemble-based classifier where
each window was used to build a separate classifier. Sliding windows that are
recomputed after each new tuple arrives in the window, are suitable when in-
cremental computation is feasible—as in the case of mining methods, such as
Naive Bayesian Classifiers that are based on count or other algebraic aggre-
gates. Two other important advantages of Stream Mill are (i) support for time
series applications, and [40], and (ii) inclusion of streaming XML data along with
relational streams [41], as needed e.g., to support PPML data. Indeed, Stream
Mill has already taken the first important steps toward becoming an Inductive
DSMS.

This example illustrates how the middle-road approach to data mining can
be generalized to work with data streams, and in fact the simpler one-one pass
algorithms that are prevalent with data streams can be expressed simply and

34 C. Zaniolo

concisely using UDAs. However, other approaches to Inductive DBMS, such
as the mining-language approach, or the OLE DB DM approach, can also be
extended naturally to support Inductive DSMS and such extensions provide an
interesting topic for future research.

4 Conclusion

Ten years after being proposed in concept papers [1, 2], the notion of inductive
databases is coming of age in terms of research advances and commercial sys-
tems with progress occurring along three largely parallel and independent paths.
Progress along the high-road pathway, has been made with the introduction of
the first generation of mining languages [6], and with techniques for the optimiza-
tion of declarative mining queries based on association rules [9]. Progress along
the middle-road has delivered SQL extensions based on natively defined UDAs
that can be used to write data mining algorithms [18]. On the commercial front,
DBMS can now support the combination of descriptive/predictive data mining
via a predefined library mining methods [42].

Remarkably these advances are not mutually exclusive but they should in-
stead be integrated to produce more powerful Inductive DBMS. In particular,
the libraries of systems such as OLE DB DM should be made extensible, as to
accommodate the inclusion of new declarative mining methods and procedural
mining methods. As demonstrated by ATLaS, new mining methods can be added
to DSMS as UDAs operating on tables. While these UDAs could be written in
a foreign language, UDAs natively and concisely written in SQL are prefer-
able, because they are safe, easier to modify, and free of ‘impedance mismatch’
problems.

In order to get synergy between these different approaches, we must assure
their interoperability. Experience with data mining libraries [43, 19] indicates
that for flexibility and interoperability, we need to establish well-defined repre-
sentations between the various steps of the mining process. These representations
must, e.g., support import/export of data, metadata and mining models, so that
they can be cooperatively exchanged between different systems. The PMML-
based approach of OLE DB [42] represents an important first step in the right
direction, but it suffers from limitations in terms of power and generality. For
instance, while a single classifier can be imported/exported using PMML, it is
not clear how ensembles of such classifiers could be assembled and reimported to
perform a predictive task. While more general approaches to the representation
of mining artifacts are possible using XML, not all representations are equally
desirable. For instance, for large data sets, relational tables have proven to be
much more efficient than XML-based ones both in terms of data and query effi-
ciencies. On the other hand, logical rules are clearly the representation of choice
in dealing with knowledge. As describe in [44] logical rule are very effective at (i)
bringing the domain knowledge to bear upon specific mining task, (ii) driving
the mining process by calling procedurally defined UDAs to perform the spe-
cific mining tasks, and (iii) combining the results of knowledge extraction with
application-expert rules. From a research viewpoint, the success obtained in [45]

Mining Databases and Data Streams with Query Languages and Rules 35

with a rule-based data mining environment suggests the need for two important
enhancements that were not available in the framework of systems [46] originally
used in those experiments. One is the ability of using induced rules as if they
were deductive rules, and the other is ability of using deductive rules to define
UDAs which compare in terms of efficiency with those written in ATLaS SQL
which approach those of UDAs written in a procedural language.

Finally, we have shown that the problem of mining data streams is so close
to that of mining databases that the two should be pursued together to exploit
the considerable opportunities their close relationship offers both in terms of
research and commercial applications.

Acknowledgements

I would like to thank Francesco Bonchi and Yan-Nei Law for their comments
and suggested improvements on the first version of the manuscript. In addition
to their many helpful comments, Haixun Wang, Yijian Bai and Hetal Thakkar
must also be credited with building ATLaS and Stream Mill.

References

1. Tomasz Imielinski. A database perspective on knowledge discovery. In The First
International Conference on Knowledge Discovery and Data Mining (KDD-95),
1995.

2. Tomasz Imielinski and Heikki Mannila. A database perspective on knowledge
discovery. Communication ACM, 39(11):58–64, 1996.

3. T. Imielinski and A. Virmani. MSQL: a query language for database mining. Data
Mining and Knowledge Discovery, 3:373–408, 1999.

4. J. Han, Y. Fu, W. Wang, K. Koperski, and O. R. Zaiane. DMQL: A data mining
query language for relational databases. In Workshop on Research Issues on Data
Mining and Knowledge Discovery (DMKD), pages 27–33, Montreal, Canada, June
1996.

5. R. Meo, G. Psaila, and S. Ceri. A new SQL-like operator for mining association
rules. In VLDB, pages 122–133, Bombay, India, 1996.

6. Marco Botta, Jean-François Boulicaut, Cyrille Masson, and Rosa Meo. Query
languages supporting descriptive rule mining: A comparative study. In Database
Support for Data Mining Applications, pages 24–51, 2004.

7. Francesco Bonchi, Fosca Giannotti, Alessio Mazzanti, and Dino Pedreschi. Exam-
iner: Optimized level-wise frequent pattern mining with monotone constraint. In
ICDM, pages 11–18, 2003.

8. Sau Dan Lee and Luc De Raedt. An algebra for inductive query evaluation. In
ICDM, pages 147–154, 2003.

9. Francesco Bonchi and Claudio Lucchese. Pushing tougher constraints in frequent
pattern mining. In PAKDD, pages 114–124, 2005.

10. Baptiste Jeudy and Jean-François Boulicaut. Constraint-based discovery and in-
ductive queries: Application to association rule mining. In Pattern Detection and
Discovery, pages 110–124, 2002.

11. IBM. Db2 intelligent miner, http://www-306.ibm.com/software/data/iminer.

36 C. Zaniolo

12. ORACLE. Oracle data miner release 10gr2, http://www.oracle.com/technology/
products/bi/odm.

13. Z. Tang, J. Maclennan, and P.P. Kim. Building data mining solutions with ole db
for dm and xml for analysis. SIGMOD Record, 34(2):80–85, 2005.

14. Data Mining Group (DMG). Predictive model markup language (pmml),
http://sourceforge.net/projects/pmml.

15. S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining with
relational database systems: Alternatives and implications. In SIGMOD, 1998.

16. Arno Siebes. Where is the mining in kdid? (invited talk). In Fourth Int. Workshop
on Knowledge Discovery in Inductive Databases (KDID 2005), Porto, Prtugal,
2005.

17. Yan-Nei Law, Haixun Wang, and Carlo Zaniolo. Data models and query language
for data streams. In VLDB, pages 492–503, 2004.

18. Haixun Wang and Carlo Zaniolo. Atlas: a native extension of sql for data minining.
In Proceedings of Third SIAM Int. Conference on Data Mining, pages 130–141,
2003.

19. Weka 3—data mining with open source machine learning software in java
http://www.cs.waikato.ac.nz.

20. Theodore Johnson, Laks V. S. Lakshmanan, and Raymond T. Ng. The 3w model
and algebra for unified data mining. In VLDB 2000, Proceedings of 26th Inter-
national Conference on Very Large Data Bases, pages 21–32. Morgan Kaufmann,
2000.

21. B. Babcock, S. Babu, M. Datar, R. Motawani, and J. Widom. Models and issues
in data stream systems. In PODS, 2002.

22. G. Hulten, L. Spencer, and P. Domingos. Mining time-changing data streams. In
SIGKDD, pages 97–106, San Francisco, CA, 2001. ACM Press.

23. Haixun Wang, Wei Fan, Philip S. Yu, and Jiawei Han. Mining concept-drifting
data streams using ensemble classifiers. In KDD, pages 226–235, 2003.

24. Fang Chu, Yizhou Wang, and Carlo Zaniolo. An adaptive learning approach for
noisy data streams. In ICDM, pages 351–354, 2004.

25. Lukasz Golab and M. Tamer Ozsu. Issues in data stream management. ACM
SIGMOD Record, 32(2):5–14, 2003.

26. Theodore Johnson, S. Muthukrishnan, and Irina Rozenbaum. Sampling algorithms
in a stream operator. In SIGMOD Conference, pages 1–12, 2005.

27. D. Abadi, D. Carney, U. Cetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul, and S. Zdonik. Aurora: A new model and architecture for data
stream management. VLDB Journal, 12(2):120–139, 2003.

28. C. Cranor, Y. Gao, T. Johnson, V. Shkapenyuk, and O. Spatscheck. Gigascope:
High performance network monitoring with an sql interface. In SIGMOD, page
623. ACM Press, 2002.

29. A. Arasu, S. Babu, and J. Widom. Cql: A language for continuous queries over
streams and relations. In DBPL, pages 1–19, 2003.

30. Mohamed Medhat Gaber, Arkady B. Zaslavsky, and Shonali Krishnaswamy. Min-
ing data streams: a review. SIGMOD Record, 34(2):18–26, 2005.

31. Sudipto Guha, Adam Meyerson, Nina Mishra, Rajeev Motwani, and Liadan
O’Callaghan. Clustering data streams: Theory and practice. IEEE Trans. Knowl.
Data Eng., 15(3):515–528, 2003.

32. Hannu Toivonen. Sampling large databases for association rules. In T. M. Vijayara-
man, Alejandro P. Buchmann, C. Mohan, and Nandlal L. Sarda, editors, VLDB’96,
Proceedings of 22th International Conference on Very Large Data Bases, September
3-6, 1996, Mumbai (Bombay), India, pages 134–145. Morgan Kaufmann, 1996.

Mining Databases and Data Streams with Query Languages and Rules 37

33. Kagan Tumer and Joydeep Ghosh. Error correlation and error reduction in ensem-
ble classifiers. Connect. Sci., 8(3):385–404, 1996.

34. Yan-Nei Law and Carlo Zaniolo. Improving the accuracy of continuous aggregates
and mining queries. In Submitted for Publication, 2005.

35. Nesime Tatbul, Ugur Çetintemel, Stanley B. Zdonik, Mitch Cherniack, and Michael
Stonebraker. Load shedding in a data stream manager. In VLDB, pages 309–320,
2003.

36. Yanif Ahmad, Bradley Berg, Ugur Çetintemel, Mark Humphrey, Jeong-Hyon
Hwang, Anjali Jhingran, Anurag Maskey, Olga Papaemmanouil, Alex Rasin, Nes-
ime Tatbul, Wenjuan Xing, Ying Xing, and Stanley B. Zdonik. Distributed op-
eration in the borealis stream processing engine. In SIGMOD Conference, pages
882–884, 2005.

37. Stream mill home. http://wis.cs.ucla.edu/stream-mill.
38. Chang Luo, Hetal Thakkar, Haixun Wang, and Carlo Zaniolo. A native extension

of sql for mining data streams. pages 873–875, 2005.
39. Hans-Peter Kriegel Martin Ester, J. Sander, and Xiaowei Xu. A density-based

algorithm for discovering clusters in large spatial databases with noise. In KDD
1996, pages 226–231, 1996.

40. Y. Bai, L. Chang, H. Thakkar, X. Zhou, and C. Zaniolo. Efficient support for
time series queries in data stream management systems. In K. Shaw N. Chaudhry
and M. Abdelguerfi (eds), editors, Stream Data Management” Kluwer: Chapter 6.
Kluwer Academic Publishers, 2005.

41. Xin Zhou, Hetal Thakkar, and Carlo Zaniolo. Unifying the processing of xml
streams and relational data streams. The 22nd International Conference on Data
Engineering April 3-7, Atlanta, GA, 2006, 2005.

42. ZhaoHui Tang, Jamie Maclennan, and Pyungchul (Peter) Kim. Building data min-
ing solutions with ole db for dm and xml for analysis. SIGMOD Record, 34(2):80–
85, 2005.

43. Clementine http://www.spss.com/clementine/index.htm.
44. F. Giannotti, G. Manco, D. Pedreschi, and F. Turini. Experiences with a logic-

based knowledge discovery support environment. In ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery (DMKD), 1999.

45. Fosca Giannotti, Giuseppe Manco, Dino Pedreschi, and Franco Turini. Experiences
with a logic-based knowledge discovery support environment. In AI*IA, pages 202–
213, 1999.

46. Faiz Arni, KayLiang Ong, Shalom Tsur, Haixun Wang, and Carlo Zaniolo. The
deductive database system ldl++. TPLP, 3(1):61–94, 2003.

Memory-Aware Frequent k-Itemset Mining

Maurizio Atzori1,2, Paolo Mancarella1, and Franco Turini1

1 Dipartimento di Informatica, University of Pisa, Italy
{atzori, paolo, turini}@di.unipi.it

2 ISTI-CNR, Area della Ricerca di Pisa, Italy

Abstract. In this paper we show that the well known problem of com-
puting frequent k-itemsets (i.e. itemsets of cardinality k) in a given
dataset can be reduced to the problem of finding iceberg queries from a
stream of queries suitably constructed from the original dataset. Hence,
algorithms for computing frequent k-itemsets can be obtained by adapt-
ing algorithms for computing iceberg queries. In the paper we show
that, for sparse datasets, this can be done directly, i.e. without gen-
erating frequent x-itemsets, for each x < k, as done in the most com-
mon algorithms based on a level-wise approach. We exploit a recent
algorithm for finding iceberg queries and define an algorithm which
requires only three sequential passes over the dataset to compute the
frequent k-itemsets (even for k > 3). An important feature of the al-
gorithm is that the amount of main memory required can be deter-
mined in advance, and it is shown to be very low for sparse datasets.
Experiments show that for very large datasets with millions of small
transactions our proposal outperforms the state-of-the-art algorithms.
Furthermore, we sketch a first extension of our algorithm that works
over data streams.

1 Introduction

The field of Data Mining concerns the extraction of useful information from raw
data. This is usually done by generalizing data to induce models from datasets.
Among the models considered important for decision making, association rules
[1, 2] play an important role, in that they allow us to highlight relevant trends in
the data and also to gain some improvements when dealing with other models,
such as classification (see e.g. [3]) and clustering [4]. Roughly speaking, mining
association rules from a given set of transactions (e.g. a given set of supermarket
receipts) amounts at finding rules of the form i1, . . . , in ⇒ in+1, . . . , ik, where
each ij is an item (e.g. a supermarket good). The intended meaning of such a
rule is that it is likely that a transaction containing the items in the premise
contains also the items in the conclusion.

It is well known that the most expensive task in mining association rules is
the extraction of frequent itemsets, i.e. sets of items which occur together in at
least a given percentage of the whole set of transactions. Once frequent itemsets
are produced from the dataset, the generation of the association rules is rather
straightforward. Since the datasets we are interested in are typically huge, it is

F. Bonchi and J.-F. Boulicaut (Eds.): KDID 2005, LNCS 3933, pp. 38–54, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Memory-Aware Frequent k-Itemset Mining 39

important to devise algorithms which try to minimize both the time and the
space required for the analysis. Most of the known proposals that solve this kind
of problem for huge datasets are based on level-wise algorithms that compute
frequent itemsets of increasing cardinality, up to a given one, thus requiring
several passes through the dataset. This is done in order to maintain the main
memory space usage acceptable. Non level-wise, depth-first algorithms also exist
[5], but they usually require that the whole dataset (although in a compressed
form) fits into main memory.

In this paper we will focus on the problem of finding itemsets of a given size di-
rectly, i.e. without generating smaller itemsets as done in level-wise approaches.
This is particularly useful in the context of Inductive Databases since in order
to answer some queries, it would be necessary to know the exact support or
the number of the frequent k-itemsets. Mining all the frequent itemsets would
reduce memory and time efficiency; on the other hand, maximal itemset mining
could be not sufficient to answer the query (in fact maximal itemsets do not
allow us to compute the exact support of smaller itemsets). As shown later in
the experiment section, in very large datasets with thousands of items and mil-
lions of small transactions our proposal is able to compute frequent k-itemsets
while the current state-of-the-art algorithms fail due to huge main memory
requirements.

First we show that the problem of finding frequent k-itemsets addressed in
this paper can be transformed into the problem of finding frequent symbols
over a (huge) stream of symbols over a given alphabet, often referred to as the
iceberg queries problem or the hot list analysis. Then, we exploit a recent al-
gorithm for the iceberg queries problem which allows us to solve the original
frequent itemset problem by only two sequential passes over the dataset plus
a preprocessing step aimed at computing some statistics on the dataset (three
passes in total). We will see that, for sparse datasets (i.e. datasets with few items
per transactions w.r.t. the total number of possible items) the amount of main
memory required by the proposed algorithm is very low and independent from
both the number of items and the size of the dataset, as shown by some ex-
periments we have conducted on a prototype implementation of the algorithm.
Notice that, when looking for association rules of the form i1 . . . in ⇒ in+1 . . . ik,
with k > n, we need to determine frequent itemsets of cardinality n and k.
Using standard level-wise algorithms such as Apriori [6], k passes through the
dataset have to be performed. Using our approach, we can run two instances
of the proposed algorithm in parallel, thus requiring three passes through the
dataset overall. The main contribution of this paper is the development of
an algorithm that, for sparse datasets, requires a limited amount of memory
while keeping a (small) constant number of passes over the input. Further-
more, we sketch first extension of our algorithm that works over data streams.
The contribution here is the development of an algorithm that, with limited
memory consumption, is able to mine frequent k-itemsets over a window (a
subset of the stream) with size proportional to the length of the stream read
so far.

40 M. Atzori, P. Mancarella, and F. Turini

1.1 Paper Organization

The paper is organized as follows. In Section 2 we set up the notation used in the
rest of the paper, formally defining both the frequent itemsets and the iceberg
queries frameworks and we briefly recall some of the existing works related to
these problems. Section 3 describes a new approach to the problem of finding
frequent itemsets of size k, based on the reduction to the iceberg queries problem.
In Section 4 we present an algorithm that computes the exact set of k-itemsets
reading sequentially the dataset only three times, or even two. In Section 5 we
study the space complexity and the number of passes over the dataset needed to
compute the set of all frequent itemsets. Under reasonable assumptions we show
that online (i.e. one pass) frequent itemset mining is not possible in the worst
case. Section 6 is devoted to present some experiments we have conducted in
order to show the effectiveness of our algorithm in terms of the amount of main
memory needed. Section 7 sketches a possible extension of the algorithm to work
over data streams. Finally, Section 8 contains some discussions on future work
and directions we are planning to follow.

2 Preliminaries

In this section we set up the basic notations and terminology that we are going
to adopt in the rest of the paper, and we formally define the so called frequent
itemset mining problem and the iceberg queries problem.

2.1 Frequent Itemset Mining Problem

Let us first set up some notational conventions used in the sequel.

Set of items. A set of items is a finite set, denoted by I. Elements of I will be
denoted by i, i′, i1, . . . and are referred to as items.

Itemset. An itemset is a subset of I. Itemsets will be denoted by I, I ′,
k-itemset. An itemset I is called a k-itemset if |I| = k, where |I| denotes the

cardinality of I.
Transaction. A transaction T is an itemset, denoted by T, T ′,
Dataset. A dataset D is a multiset (a bag) of transactions. Given D , the

maximal transaction length of D is

mD = max{|T | | T ∈ D}.

In order to show some properties and theorems in the next sections, let us
formally define the frequent itemsets mining problem.

Definition 1 (FIM Problem). Let D be a dataset and I be an itemset. I is
called a frequent itemset with respect to D and a support σ, with 0 < σ ≤ 1 if:

|{T ∈ D | I ⊆ I(T)}| ≥ σ|D|.

Let Fk(σ,D) be the set of all k-itemset that are frequent w.r.t. σ and D . Then,
the FIM problem is defined as the task of determining Fk(σ,D) for each k such
that 0 < k ≤ mD.

Memory-Aware Frequent k-Itemset Mining 41

In the sequel we will often write simply Fk instead of Fk(σ,D), whenever the
parameters σ and D are either clear from the context or irrelevant.

2.2 Iceberg Queries

Our approach is based on the reduction of the problem of frequent itemsets
computation to the problem of finding iceberg queries. Let us define the so
called Iceberg Queries problem (also known as Hot List Analysis).

Alphabet. By Q we denote a finite alphabet. Elements of Q are denoted by
q, q′, q1, . . . and are referred to as queries.

Stream. A stream of queries is a sequence s = 〈q1, . . . , qn〉, such that qi ∈ Q,
for each 1 ≤ i ≤ n; the length n of the stream is referred to as |s|.

Frequence. Given a stream s and a query q, fs(q) denotes the number of oc-
currences of q in s.

Definition 2 (IQ Problem). Let Q be a set of queries, s be a stream of queries
and ϑ be a real number such that 0 < ϑ ≤ 1. The IQ problem is defined as the
task of determining the subset Q(ϑ, s) defined as follows:

Q(ϑ, s) = {q ∈ Q | fs(q) > ϑ|s|}.

In the sequel, if a query q belongs to Q(ϑ, s) we will say that q is an iceberg
query with respect to Q, s and ϑ.

Before going on, it is worth pointing out that, in concrete applications of both
FIM and IQ problems, the input (D and s, respectively) is usually huge and it
can only be read sequentially (e.g. according to transaction identifiers in the first
case and to the sequence order in the second case). Moreover, in FIM problems
we usually have |D| � |I| and in IQ problems we usually have |s| � Q � 1/ϑ.

2.3 The KSP Algorithm

A simple and exact algorithm to solve the IQ problem is described in [7], and
we will refer to it as the KSP -algorithm (see Algorithm 1). Given a stream s
and a real number ϑ (called the threshold), the algorithm in [7] requires one pass
through the input stream in order to find a superset of the required Q(ϑ, s).
A trivial second pass can be done to find exactly Q(ϑ, s), keeping the same
performance characteristics. In particular, the authors show that their algorithm
requires only O(1/ϑ) memory cells. As shown in Algorithm 1, the only data
structures used by KSP is a set of queries K and a counter for each query in K.

Example 1. Suppose to have s = 〈c, b, b, f, g〉 and ϑ = 0.4. This means that we
are looking for queries that occur at least 2 times (40% of a stream of 5 queries)
At the very beginning of the computation, the set K is empty. We first find c and
insert it into K, and count(c) = 1. Since |K| = 1 �> 1/0.4 = 2.5 we process the
next query, b. Now we have K = {b, c}, count(c) = 1 and count(b) = 1. After the
third query (another b) we have K = {b, c}, count(c) = 1 and count(b) = 2. With
the fourth query, f , we first have K = {c, b, f}. But since |K| = 3 > 2.5 then

42 M. Atzori, P. Mancarella, and F. Turini

Algorithm 1. The KSP -algorithm
Input: s, ϑ
Output: a superset K of Q(ϑ, s) s.t. |K| ≤ 1/ϑ
1: for all q ∈ s do
2: if q �∈ K then
3: K ← K ∪ q;
4: count(q) ← 0;
5: count(q) ← count(q) + 1 ;
6: if |K| > 1/ϑ then
7: for all a ∈ K do
8: count(a) ← count(a) − 1 ;
9: if count(a) = 0 then

10: K ← K \ a;

every count has to be decremented: count(f) = count(c) = 0 while count(b) = 1.
Every query in K with count equal to zero must be removed from K, so now
we have K = {b}. By taking into account also the last query, g, we will have
K = {b, g}. In fact, {b, g} is a superset of the exact result {b} with less than 2.5
elements. Another trivial pass through the stream s will show that count(b) = 2
and therefore it can be considered as a valid output while g is not frequent
enough since count(g) = 1.

2.4 Related Work

Almost all the algorithms for finding frequent itemsets are based on the level-wise
generation of candidates of the Apriori algorithm [6]. The level-wise approach
is performed in order to maintain the search space small enough to fit into
the main memory. This strategy necessarily leads to several passes through the
dataset.

Some other papers present different approaches in order to keep the number
of passes through the dataset constant. In [8] the authors show a partitioning
technique that needs two passes through the database. First, the dataset is par-
titioned into several parts which are small enough to fit into the memory. Every
partition is elaborated using a level-wise algorithm and then the results of each
partition are merged. This leads to a superset of the solution. A second scan
then removes the false positive elements of the superset. Unfortunately, if the
dataset is very large then the resulting partitions can be too small with respect
to the dataset, leading to a huge superset, and this can reduce the effectiveness
of the algorithm.

Another important approach to reduce the number of passes through the
dataset is the one proposed by Toivonen in [9] and then refined in [10, 11], based
on the evaluation of a small random sample of the dataset. A set of patterns
that are probably frequent in the whole dataset are generated, and then their
exact frequencies are verified in the rest of the dataset. If a failure occurs in
the generation of candidates (i.e., there are false negatives), a mechanism is
provided which, in a second pass, computes the remaining frequent patterns.

Memory-Aware Frequent k-Itemset Mining 43

By decreasing the support threshold the probability of failure can be decreased,
but for low probabilities this drastically increments the number of candidates.
Furthermore, if we are dealing with very large datasets, it is possible that the
(small) sample is not very representative of the whole dataset, and this means
that there is a high probability of failure. In this case the candidates to be
verified in the second pass can be too many to be fitted into the main memory
(i.e. more than two passes are needed). For a survey on frequent itemset mining
algorithms, see [2].

Main memory usage of depth-first (i.e., non-levelwise) frequent pattern min-
ing algorithms is discussed in [12]: two state-of-the-art algorithms, FP-Growth
[5] and Eclat [13], are tested and shown to be very memory consuming even
for medium-size datasets. A simple improvement of Eclat, named Medic, is pro-
posed but it is empirically shown to reduce the amount of memory needed of
≈ 50% in the best case: the memory requirements still depend on the size of the
dataset, and this fact leaves the algorithm impractical when datasets are very
large. Another confirmation of the scalability limitations of current state-of-the-
art algorithms for frequent itemset mining came from the First IEEE ICDM
Workshop on Frequent Itemset Mining Implementations, FIMI 2003 [14], where
several well-known algorithms were implemented and independently tested. The
results show that “none of the algorithms is able to gracefully scale-up to very
large datasets, with millions of transactions”.

The approach presented in this paper computes frequent itemsets of size
k directly (i.e. without computing smaller itemsets), performing two passes
though the dataset. Moreover, the amount of main memory needed is known
in advance and it is acceptable under the hypothesis that the given dataset is
sparse.

Our technique is based on a novel approach to the Iceberg Queries problem,
proposed in [7] and briefly summarized in the previous subsection. The authors
present a (surprisingly) simple algorithm able to find all queries with frequency
greater than or equal to a given threshold ϑ, from a given stream of queries (i.e.,
iceberg queries) by using O(1/ϑ) main memory cells and performing two passes
through the stream. Notice that, in the worst-case, the output size is exactly
1/ϑ. Furthermore, the algorithm proposed in [7], that we call KSP, does O(1)
operations per query (under the reasonable assumption that hash tables make
O(1) operations for insertion, search and deletion).

3 Transforming FIM Problems into IQ Problems

In this section we show how a FIM problem can be transformed into an IQ
problem. Roughly speaking, the idea is to associate to each k-itemset a query
and to construct a suitable stream sD of queries starting from the given dataset
D , in such a way that the problem of determining Fk(σ,D) is transformed into
the problem of determining Q(ϑ, sD), where ϑ is a function of σ,mD and k.
Once we have defined such transformation, we can adopt any algorithm for the
IQ problem in order to solve the original FIM problem. In particular, we can

44 M. Atzori, P. Mancarella, and F. Turini

adopt algorithms which keep the number of passes through the dataset as small
as possible. In the next section, we will show such an algorithm which is based
on the one proposed by [7] for the IQ problem.

In the sequel, given a finite set S and a natural number k, we denote by
Sk the set of all the subsets P ⊆ S such that |P | = k. Moreover, given two
sequences s = 〈x1, . . . , xn〉 and s′ = 〈y1, . . . , ym〉, we denote by s :: s′ the
sequence 〈x1, . . . , xn, y1, . . . , ym〉.

We first define the transformation which, given a FIM problem, constructs a
corresponding IQ problem.

Definition 3 (FIM to IQ). Let I be an itemset, D be a dataset, and k be a
natural number such that k ≤ mD. Then:

(i) The alphabet QI is defined as the set Ik (each set in Ik is a symbol in the
alphabet).

(ii) For each T ∈ D, a stream associated with T is a sequence sT = 〈I1, . . . , InT
〉

such that

• {I1, . . . , InT
} = T k

• each Ij ∈ T k occurs in sT exactly once.

(iii) If D = {T1, . . . , Tn}, then a stream sD associated with D is a sequence

s = sT1 :: sT2 :: . . . :: sTn
.

Notice that, in the above definition, we do not define the stream associated
with a transaction, but rather a stream associated with it. Similarly we talk
about a stream associated with the dataset D . Indeed, given a transaction
Ti there are many ways of constructing a stream sTi

corresponding to it, and
consequently, there may be many ways of constructing sD. Actually, the choice
of sD is irrelevant as far as the correctness of the transformation is concerned.

In the next theorem we show that a FIM problem Fk(σ,D) can be mapped into
an IQ problem Q(ϑ, sD) where sD is any stream constructed as in the previous
definition and ϑ is a suitable function of σ, k and mD.

Theorem 1. Let I be an itemset, D be a dataset, k be a natural number such
that k ≤ mD, and σ be a real number such that 0 < σ ≤ 1. Let QI and sD be
the alphabet and a stream of queries as in Definition 3. Let also ē =

(
mD
k

)
. If an

itemset I is a frequent k-itemset with respect to σ and D , then I is an iceberg
query with respect to QI , sD, and ϑ = σ

ē . Formally:

I ∈ Fk(σ,D) =⇒ I ∈ Q(ϑ, sD).

Proof. Let |D| = N and D = {T1, . . . , TN}. We observe:

(1) |sD| =
N∑

i=1

(|Ti|
k

)
≤

N∑
i=1

(
mD
k

)
= ēN

(2) By construction of sD, |{T ∈ D|I ⊆ I(T)}| = fsD(I).

Memory-Aware Frequent k-Itemset Mining 45

I ∈ Fk(σ,D)
=⇒ {By definition of Fk(σ,D)}

|{T ∈ D|I ⊆ I(T)}| ≥ σN
⇐⇒ {By observation (2)}

fsD(I) ≥ σN
⇐⇒ {algebra}

fsD(I) ≥ σ
ē Nē

=⇒ {By observation (1) and definition of ϑ}
fsD(I) ≥ ϑ|sD|

=⇒ {by definition of Q(ϑ, sD)}
I ∈ Q(ϑ, sD). ��

The previous theorem suggests a new technique for finding frequent k-itemsets,
which can be sketched as follows:

(1) Construct a stream sD corresponding to D ;
(2) Find the set of Iceberg Queries Q(ϑ, sD).

It is worth noting that, in our proposal, step (1) and (2) are not performed
sequentially, but rather they are interleaved.

Example 2. Let us give a simple example of the above transformation. Let I =
{a, b, c, d, e, f} be the underlying set of items and let D be the following set of
transactions:

D = {{a, b, d}, {a, c, e}, {a, d, f}, {b, c}, {b, d, e}, {c, d, f}}

Assume that we are interested in 2-itemsets which occur in at least σ = 1/3 of
the transactions. It is easy to see that, among all possible 2-itemsets (

(|I|
k

)
=(6

2

)
= 15), only {a, d}, {b, d} and {d, f} appear at least twice.

It is worth noting that anti-monotonicity1 here is not useful at all. In fact,
every item (1-itemset) in this example is frequent: it means that 15 candidate
2-itemsets have to be tested by a levelwise algorithm (e.g. Apriori) in a second
pass. Even constraint-based techniques (e.g. [15]) cannot be used here since there
are no transactions containing less than 2 items (they would be removed since
they do not generate any 2-itemset, possibly reducing the search space) and thus
the constraint on the size of the itemsets cannot be exploited.

Let us consider now our FIM-to-IQ transformation. For each transaction Ti

in D , we build a stream si associated with it:

s1 = 〈{a, b}, {a, d}, {b, d}〉
s2 = 〈{a, c}, {a, e}, {c, e}〉
s2 = 〈{a, d}, {a, f}, {d, f}〉
s4 = 〈{b, c}〉
s5 = 〈{b, d}, {b, e}, {d, e}〉
s6 = 〈{c, d}, {c, f}, {d, f}〉

1 The anti-motonicity property of the itemset frequency asserts that if I is frequent,
then all the subsets of I have to be frequent.

46 M. Atzori, P. Mancarella, and F. Turini

The stream associated with D is then sD = s1 :: s2 :: s3 :: s4 :: s5 :: s6. Since
mD = 3, in this case the threshold for the IQ problem is set to

ϑ =
σ(

mD
k

) =
1
3(3
2

) =
1
9

Notice that in the stream sD, the “queries” {a, d}, {b, d} and {d, f} are the only
ones occurring with a frequency of 1/8 ≥ ϑ. In this case the KSPalgorithm only
requires 1/ϑ = 9 counters instead of the 15 needed by a levelwise algorithm for
frequent itemset mining, and only two passes over the dataset (but we need to
know mD in advance). If |I| > 10000 and most of the items are frequent, then the
number of candidate 2-itemsets can be too large to be fitted in main memory. In
such a case an Apriori-like approach will lead to “out of memory errors”, while
our transformation approach is still effective (see Section 6).

4 The Proposed Algorithm

In this section we propose an instance of the technique based on the result of
the previous section, which exploits the KSP -algorithm [7] showed in Section
2.3. Given a stream s and a threshold ϑ, the KSP -algorithm requires one pass
through the input stream in order to find a superset of the required Q(ϑ, s).
A trivial second pass can be done to find exactly Q(ϑ, s), keeping the same
performance characteristics, using only O(1/ϑ) memory cells.

In order to exploit the KSP -algorithm, given a dataset D , for each transaction
T ∈ D we feed the KSP -algorithm by each k-itemset contained in I(T), where
k is the given size of itemsets we are interested in. The parameters for the
KSP -algorithm are set as suggested in Theorem 1, i.e. the threshold is set to σ

ē
(recall that ē =

(
mD
k

)
, where mD is the maximal length of a transaction in D).

In this way we obtain a two-passes algorithm, with the drawback of having to
know the value of mD in advance. If mD is not known, a “preprocessing pass”
is required. Thus, we obtain a three-passes algorithm that saves more memory
(w.r.t the two-passes version) since the length of the stream sD can be computed
exactly in the preprocessing pass, instead of being roughly over-approximated
in a pessimistic way by

(
mD
k

)
|D|.

In the specification of our algorithm (see Algorithm 2), we will use the follow-
ing notations:

– KSP.init sets up the data structures for the KSP -algorithm;
– KSP.threshold refers to the parameter ϑ of the KSP -algorithm;
– KSP.send(I) sends the itemset I to the KSP -algorithm as an element of the

stream of queries;
– KSP.output denotes the set computed by the KSP -algorithm.

Notice that Pass 1 (lines 10–12) of Algorithm 2 basically corresponds to run
KSP for computing a superset of the desired set of queries (itemsets in our
case). The second, trivial pass of our algorithm (lines 15–22) filters out from this

Memory-Aware Frequent k-Itemset Mining 47

Algorithm 2. Stream Mining Algorithm
Input: D, σ, k
Output: Fk(σ,D), count(I) ∀I ∈ Fk(σ,D)
1: //Pre-processing pass: some statistics on D are computed
2: streamLength ← 0; dbLength ← 0;
3: for all T ∈ D do
4: dbLength ← dbLength + 1;
5: streamLength ← streamLength +

(|T |
k

)
;

6: //Initialize the data structures for KSP
7: KSP.threshold ← σ dbLength

streamLength
;

8: KSP.init;
9: //Pass 1: a superset of Fk(σ,D) is computed

10: for all T ∈ D do
11: for all I ⊆ T s.t. |I| = k do
12: KSP.send(I);
13: //assert: KSP.output is a superset of Fk(σ,D)
14: //Pass 2: the actual counts of frequent k-itemsets are obtained
15: for all T ∈ D do
16: for all I ⊆ T s.t. |I| = k do
17: if I ∈ KSP.output then
18: count(I) ← count(I) + 1;
19: //infrequent k-itemsets are pruned
20: for all I ∈ KSP.output do
21: if count(I) ≥ σ · dbLength then
22: Fk(σ,D) ← Fk(σ,D) ∪ I;

superset those itemsets which do not occur at least σ · |D| times in the given
dataset. In Pass 2, count is a data structure used to actually count the number
of exact occurrences of an itemset in the given dataset. Notice that the same
data structure used to represent the output of the KSP -algorithm (typically an
hash table) can be used to implement the count data structure as well. This is
indeed what we have done in our prototype implementation of the algorithm.

The correctness of the algorithm is guaranteed by the correctness of the KSP -
algorithm and by Theorem 1. As far as space complexity is concerned, the fol-
lowing theorems can be easily proven.

Theorem 2. Pass 1 of the proposed algorithm computes a superset of Fk(σ,D)
in O(ē/σ) space with one sequential pass through the dataset.

Proof. The data structures used in Pass 1 of the algorithm are those used by
KSP. The space complexity of the latter, given a threshold ϑ, is O(1/θ). Since
KSP.threshold is set to σ/ē the result follows trivially. ��
Trivially, Pass 2 of the algorithm computes the actual Fk(σ,D) reading once
more the dataset, but without requiring further data structures. Hence we have
the following corollary.

Corollary 1. The proposed algorithm computes Fk(σ,D) in O(ē/σ) space with
two sequential passes through the dataset.

48 M. Atzori, P. Mancarella, and F. Turini

5 Space Complexity of the Online Frequent Itemset
Mining Problem

In this section we study the space complexity and the number of passes over the
dataset needed to compute the set of all frequent itemsets. As we will show, there
is a trade-off between the space complexity (memory needed) and the number
of passes required. One of the main result is to prove that online (i.e. one pass)
frequent itemset mining is not possible in the worst case (under the usual and
reasonable assumption that the memory cannot contain all the couple of items).
This theoretical result justifies the use of approximated algorithms for stream
mining of frequent itemset.

We are going to prove the theorem, we need the following proposition, proved
in [7]:

Lemma 1. Any online algorithm for computing iceberg queries needs Ω(|A|)
space, where A is the alphabet (the set of all queries).

Then we have:

Theorem 3. Space complexity of online mining of σ-frequent 2-itemsets is
Θ(|I|2).

Proof. By contradiction. We prove that if the theorem is false then also online
θ-frequent iceberg queries can be obtained in less than O(|A|), where |A| is the
size of the alphabet, that is false as shown in [7].

The idea is based on datasets composed by exactly 2 items per transaction.
The number of different 2-itemsets is(

I
2

)
=
|I| · (|I| − 1)

2
∈ Θ(|I|2)

Seeing the database as a stream of queries where each transaction is a query,
then we have a stream of length N in the alphabet of 2-itemsets, of size

(I
2

)
Note

that, until now, we didn’t fix any dataset nor stream in particular, but only the
size of the alphabet. Among all possible such streams let us take the worst case
stream (therefore, now we are fixing a specific dataset). In this case, according
to Lemma 1, we need at least cardinality of the alphabet cells to compute (in
one pass) the most frequent queries (i.e. 2-itemsets). ��

The following result trivially follows:

Corollary 2. Space complexity of the exact online σ-frequent itemset mining
problem is Ω(|I|2).

6 Experiments

Even if our algorithm performs only two or three passes through the dataset
(depending on whether we know mD in advance or not, where mD is the maxi-
mal transaction length of the dataset), both time and space complexity linearly

Memory-Aware Frequent k-Itemset Mining 49

 0.125

 1

 8

 64

 512

 4096

 2 4 6 8 10 12 14 16 18 20

M
ai

n
m

em
or

y
us

ag
e

(M
b)

Max transaction length

Mined Patterns:
2-itemsets
4-itemsets
6-itemsets
8-itemsets

10-itemsets

Fig. 1. Memory usage is a function of md and k (in this graph σ is fixed to 1/1000)

depend on ē. The first thing to keep in mind is that, for the class of applications
of the algorithm we have in mind, accessing the dataset is much more expen-
sive than performing main memory operations, and if ē is not too big, we can
perform main memory operations while reading the dataset. For example, let
us imagine a scenario in which a huge dataset is stored in different servers, and
communications are encrypted (e.g., in the context of distributed data mining).
It is easy to understand that, in this context, reducing the number of passes
through the dataset is preferable, even at the cost of adding some more local
main memory computations.

Anyway, we know that ē =
(
mD
k

)
is polynomial in mD (it is Θ(nk), where

n = mD). This can lead to huge memory requirements, which is obviously not
acceptable. The graph in Fig. 1 shows the amount of memory needed by our
algorithm, when varying both mD and k (the size of the frequent itemsets we
are looking for), and keeping σ fixed to 1/1000 (be aware of the logarithmic scale
used for the y axis). These results actually show the minimal requirements for the
main hashtable structure used by our algorithm. Of course, a real implementation
will use some more memory in order to store other runtime data, but since the
hashtable is the only data structure in our algorithm, we can fairly expect to
use such amount of memory by an actual implementation. As we will see later
in this section, this is actually confirmed by experiments with our prototype
implementation.

For example, the graph shows that if mD = 16 and k = 4 (σ = 1/1000) then
we need less than 128 Mb. Notice that the space requirements are also linearly

50 M. Atzori, P. Mancarella, and F. Turini

dependent on 1/σ. Hence, in the previous example, if σ = 1/100 then we need
only ≈ 13 Mb in order to compute the exact set of all frequent 6-itemsets. These
results are obtained by using an hashtable for KSP which requires 40 bytes per
cell and a load factor of 0.75 (it is the only data structure used in Algorithm 2).

We believe that these results are quite satisfactory. Notice that they do not
depend on the size of the dataset or the number of possible items (except for a
necessary logarithmic factor due to the number of bits required for the counters)
but only on σ, mD and k.

Furthermore, although the proposed algorithm scales polynomially in the size
of the maximal transaction, if the dataset is sufficiently sparse it is possible
to divide the transactions into two groups: a small group with the large trans-
actions, and a large group where the proposed algorithm can be applied, con-
taining short transactions. If the former group is small enough, the parame-
ters of the iceberg algorithm would only need to be modified slightly, and the
filtering pass would use the original parameter to select the actual frequent
itemsets.

We also carried on a set of experiments in order to compare the scalability of our
algorithm with the state-of-the-art algorithms FPGrowth [5], Eclat [13], Relim [16]
and the well-known Apriori [6]. We generated an artificial dataset Retail-like, by
replicating the Retail dataset (from the FIMI Repository [14]) and by inserting 2
different items in each transaction, with the following characteristics:

Number of Transactions 12,497,500
Number of Items 16,470
Size of Largest Transaction 78
Size of Dataset 722Mb

Then, we truncated the dataset in order to limit the number of transactions at
1, 2, 3, 4 and 5 millions. Results on main memory usage are showed in Fig. 2. On
a 512Mb-Ram Pentium machine, Relim was able to find 2-frequent itemsets up
to 3 millions of transaction before crashing, while Apriori, FPGrowth and Eclat
went up to 4 millions. Only our three-passes algorithm was able to compute all
the 2-frequent itemsets in the 5 millions dataset.

Memory requirements of almost all algorithms grow linearly with the size
of the dataset. This is a big problem for huge datasets, as the one we used.
Even Apriori algorithm, whose space complexity doesn’t really depend on the
number of transactions, show to be linearly growing. This happens because in
our dataset new transactions often contain new (i.e., not seen so far) pairs of
items (while the number of different items is fixed). Anti-monotonicity is not
very exploitable since most of items are frequent, so almost every 2-itemset
is a valid candidate. Our 3-passes algorithm shows a completely different be-
havior, actually being the only scalable algorithm with constant memory
consumption.

With respect to time performance, our algorithm, in the current unoptimized
Java implementation, is slower than the other algorithms (all implemented in-

Memory-Aware Frequent k-Itemset Mining 51

 0

 50

 100

 150

 200

 250

 300

 350

 400

 1 1.5 2 2.5 3 3.5 4 4.5 5

M
em

or
y

U
sa

ge
 (

M
B

)

Number of Dataset Transactions (Millions)

Our 3-pass Algorithm
FPGrowth

Eclat
Relim

Apriori

Fig. 2. Memory actually used by FIM Algorithms (σ = 1/100)

dependently in C), but it comes out to be very scalable, by requiring 21 minutes
for the 1 million dataset, and 41 minutes for the 2 millions dataset. We also
noted that in all FIM algorithms we tested running time are very related with
memory used and available.

7 Frequent k-Itemset Mining over Streams

In this section we describe how to exploit the above results in the case of Stream
Mining. We assume to have a stream of transactions and we want to compute
k-itemset that appear at least σ% times over the stream. Once we access a
transaction, we cannot access to the previous one; in other words, the stream
can be read only once, sequentially. Every problem over streams can be trivially
reduced to the non-stream version by assuming to have enough memory to store
the whole stream. Unfortunately, this assumption is not acceptable in most of the
practical stream problems, rather impossible in some cases, since the stream is
potentially infinitely long. Therefore, in the case of frequent itemset mining over
streams, only online (i.e., 1-pass) algorithms are acceptable. Another common
requirement in data stream algorithms is the ability to show anytime partial
results (computed over the part of stream analyzed so far).

In Section 5 we showed (Corollary 2) that space complexity of exact online
σ-frequent itemset mining problems is Ω(|I|2). As we mentioned, this means
that only approximated algorithms are good for online σ-frequent itemset mining
problems. The last part of the stream is usually more interesting since it contains

52 M. Atzori, P. Mancarella, and F. Turini

the most recent trends in the stream itself. Many online algorithms are based
on sliding windows, i.e., they compute the frequent (k-)itemsets over the last
l transactions read so far (i.e., windows of size l), where l is a constant that
depends on the memory available.

The following is an adaptation of our Algorithm 2 presented in Section 4 that
is able to mine frequent k-itemsets online (over a stream), with the guarantee to
compute the results considering a window with size proportional to the length
of the stream read so far (not only a window of constant size).

Algorithm 3. Online Stream Mining Algorithm
Input: S, σ, k, mD
Output: Fk(σ,S), count(I) ∀I ∈ Fk(σ,D)
1: KSP.threshold ← σ

(mD
k) ;

2: KSP.init;
3: current ← 1;
4: window size ← 1;
5: while true do
6: for i : 1 to window size do
7: use S[current] with our Pass1;
8: current ← current + 1;
9: for i : 1 to window size do

10: use S[current] with our Pass2;
11: current ← current + 1;
12: window size ← 2 · window size;

Our Online Stream Mining Algorithm (Algorithm 3) alternates Pass 1 and
Pass 2 of Algorithm 3 over exponential growing windows. First, a window of
size 1 (i.e., only one transaction is considered) is used, applying Pass 1. Then
the second transaction is read, applying Pass 2. Now the window size is doubled,
and Pass 1 is applied to the next two transactions (transactions 3 and 4), then
Pass 2 to transactions 5 and 6.

8 Conclusions and Future Work

We presented an algorithm to compute the exact set of frequent k-itemsets (and
their counts) on a given dataset, with reasonable space requirements under the hy-
pothesis that the dataset is sparse. The algorithm is obtained by transforming the
set of transactions into streams of k-itemsets and by using an algorithm for iceberg
queries in order to compute the output. As far as space complexity is concerned, the
algorithm requires an acceptable amount of main memory even for huge datasets,
as shown in the paper. We have actually implemented a first, non-optimized ver-
sion of the algorithm, i.e. without making use of specific (e.g., compressed) data
structures. Some experiments on concrete (sparse) datasets are encouraging also
as far as time complexity is concerned, showing the effectiveness of the algorithm.

Memory-Aware Frequent k-Itemset Mining 53

We plan to implement an optimized version of our algorithm that is able to
compute all the frequent itemsets with only two passes (having the maximum
transaction length in input), running some instances of the current version of
the algorithm for different values of k, but saving memory because of the redun-
dancies among different instances (e.g., if the 3-itemset {(a, b, c)} is frequent we
do not need to store that also the 2-itemsets {(a, b), (a, c), (b, c)} are frequent).

Moreover, we plan to study hybrid algorithms which exploit our approach
for the first few steps of a level-wise algorithm à la Apriori. For example, we
can determine in advance suitable bounds for k which ensure that the amount of
memory required by our algorithm keeps reasonable in computing x-itemsets, for
each level x ≤ k. Then, we can continue the generation of frequent h-itemsets,
for h > k, by using a standard level-wise approach. Notice that, for each x < k
we can even adopt a simpler version of our algorithm, which performs only the
first pass through the dataset (i.e., computing supersets of frequent x-itemsets).

Finally, from the theoretical point of view, we believe that the FIM to IQ
transformation presented in the paper can also be useful to get theoretical results
on the trade-off between memory requirements and number of passes over the
dataset in the FIM problem. Further work is still needed in this respect.

Acknowledgments. The authors wish to thank the three anonymous reviewers
of KDID05 for their useful comments and suggestions.

References

1. Hipp, J., Güntzer, U., Nakhaeizadeh, G.: Algorithms for association rule mining –
a general survey and comparison. SIGKDD Explorations 2 (2000) 58–64

2. Goethals, B.: Survey on frequent pattern mining (2003)
3. Li, W., Han, J., Pei, J.: CMAR: Accurate and efficient classification based on mul-

tiple class-association rules. In: International Conference on Data Mining. (2001)
369–376

4. Han, E.H., Karypis, G., Kumar, V., Mobasher, B.: Clustering based on association
rule hypergraphs. In: Research Issues on Data Mining and Knowledge Discovery.
(1997)

5. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation.
In Chen, W., Naughton, J.F., Bernstein, P.A., eds.: Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data, May 16-18, 2000,
Dallas, Texas, USA, ACM (2000) 1–12

6. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In Bocca,
J.B., Jarke, M., Zaniolo, C., eds.: Proc. 20th Int. Conf. Very Large Data Bases,
VLDB, Morgan Kaufmann (1994) 487–499

7. Karp, R.M., Shenker, S., Papadimitriou, C.H.: A simple algorithm for finding
frequent elements in streams and bags. In: Proceedings of the ACM PODS 2003.
Volume 28., ACM (2003)

8. Savasere, A., Omiecinski, E., Navathe, S.B.: An efficient algorithm for mining
association rules in large databases. In: The VLDB Journal. (1995) 432–444

9. Toivonen, H.: Sampling large databases for association rules. In Vijayaraman,
T.M., Buchmann, A.P., Mohan, C., Sarda, N.L., eds.: In Proc. 1996 Int. Conf.
Very Large Data Bases, Morgan Kaufman (1996) 134–145

54 M. Atzori, P. Mancarella, and F. Turini

10. Chen, B., Haas, P., Scheuermann, P.: A new two-phase sampling based algorithm
for discovering association rules. In: Proceedings of the eighth ACM SIGKDD
international conference on Knowledge discovery and data mining, ACM Press
(2002) 462–468

11. B. Chen, P.J. Haas, P.S.: Fast: A new sampling-based algorithm for discovering
association rules. In: 18th International Conference on Data Engineering. (2002)

12. Goethals, B.: Memory issues in frequent itemset mining. In: Proceedings of the
2004 ACM Symposium on Applied Computing (SAC’04), Nicosia, Cyprus, March
14 –17, 2004, ACM (2004)

13. Zaki, M.J.: Scalable algorithms for association mining. In: IEEE Transactions on
Knowledge and Data Engineering, ACM Press (2000) 372–390

14. Goethals, B., Zaki, M.J., eds.: FIMI ’03, Frequent Itemset Mining Implementations,
Proceedings of the ICDM 2003, Workshop on Frequent Itemset Mining Implemen-
tations, 19 December 2003, Melbourne, Florida, USA. In Goethals, B., Zaki, M.J.,
eds.: FIMI. Volume 90 of CEUR Workshop Proceedings., CEUR-WS.org (2003)

15. Bonchi, F., Giannotti, F., Mazzanti, A., Pedreschi, D.: Examiner: Optimized level-
wise frequent pattern mining with monotone constraint. In: International Confer-
ence on Data Mining 2003, Melbourne, Florida, USA. (2003) 11–18

16. Borgelt, C.: Keeping things simple: Finding frequent item sets by recursive elimi-
nation. In: Workshop Open Software for Data Mining, on Frequent Pattern Mining
Implementations (OSDM05), Chicago, IL, USA. (2005)

Constraint-Based Mining of Fault-Tolerant
Patterns from Boolean Data

Jérémy Besson1,2, Ruggero G. Pensa1, Céline Robardet3,
and Jean-François Boulicaut1

1 INSA Lyon, LIRIS CNRS UMR 5205, F-69621 Villeurbanne cedex, France
2 UMR INRA/INSERM 1235, F-69372 Lyon cedex 08, France
3 INSA Lyon, PRISMA, F-69621 Villeurbanne cedex, France

{Firstname.Name}@insa-lyon.fr

Abstract. Thanks to an important research effort during the last few
years, inductive queries on local patterns (e.g., set patterns) and their as-
sociated complete solvers have been proved extremely useful to support
knowledge discovery. The more we use such queries on real-life data, e.g.,
biological data, the more we are convinced that inductive queries should
return fault-tolerant patterns. This is obviously the case when consider-
ing formal concept discovery from noisy datasets. Therefore, we study
various extensions of this kind of bi-set towards fault-tolerance. We com-
pare three declarative specifications of fault-tolerant bi-sets by means
of a constraint-based mining approach. Our framework enables a bet-
ter understanding of the needed trade-off between extraction feasibility,
completeness, relevance, and ease of interpretation of these fault-tolerant
patterns. An original empirical evaluation on both synthetic and real-life
medical data is given. It enables a comparison of the various proposals
and it motivates further directions of research.

1 Introduction

According to the inductive database approach, mining queries can be expressed
declaratively in terms of constraints on the desired patterns or models [16, 10, 6].
Thanks to an important research effort the last few years, inductive queries on lo-
cal patterns (e.g., set or sequential patterns) and complete solvers which can eval-
uate them on large datasets (Boolean or sequence databases) have been proved
extremely useful. Properties of constraints have been studied in depth (e.g.,
monotonicity, succinctness, convertibility) and sophisticated pruning strategies
enable to compute complete answer sets for many constraints (i.e., Boolean com-
bination of primitive constraints) of practical interest. However, the more we use
these techniques on intrinsically dirty and noisy real-life data, e.g., biological
or medical data, the more we are convinced that inductive queries should re-
turn fault-tolerant patterns. One interesting direction of research is to introduce
softness w.r.t. constraint satisfaction [1, 5]. We consider in this paper another
direction leading to crispy constraints in which fault-tolerance is declaratively
specified.

F. Bonchi and J.-F. Boulicaut (Eds.): KDID 2005, LNCS 3933, pp. 55–71, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

56 J. Besson et al.

Table 1. A Boolean context r1

g1 g2 g3 g4 g5 g6 g7

t1 1 0 1 0 1 0 0
t2 1 1 1 1 0 1 0
t3 0 1 1 1 1 1 1
t4 0 0 0 1 1 1 0
t5 1 0 0 0 0 1 0
t6 1 1 1 1 1 0 0
t7 1 1 1 1 1 0 0

Our starting point is the fundamental limitation of formal concept (i.e., con-
nected closed sets) discovery from noisy data. Formal concept analysis has been
developed for more than two decades [24] as a way to extract knowledge from
Boolean datasets. Informally, formal concepts are maximal bi-sets/rectangles of
true values1. For instance, Table 1 is a toy example dataset r1 and the bi-set
({t6, t7}, {g1, g2, g3, g4, g5}) is a formal concept in r1.

Some algorithms are dedicated to the computation of complete collections of
formal concepts [17]. Since, by construction, formal concepts are built on closed
sets, the extensive research on (frequent) closed set computation (see [15] for a
survey) has obviously opened new application domains for formal concept dis-
covery. When considering very large and/or dense Boolean matrices, constraint-
based mining of formal concepts has been studied [23, 4]: every formal concept
which furthermore satisfies some other user-defined constraints is computed. For
example, we can extract formal concepts with minimal size constraints for both
set components. Given our previous example, if we want formal concepts with
at least 3 elements in each set, the formal concept ({t3, t6, t7}, {g2, g3, g4, g5})
satisfies the constraint whereas ({t6, t7}, {g1, g2, g3, g4, g5}) does not.

A formal concept associates a maximal set of objects to a maximal set of
properties which are all in relation. Such an association is often too strong in real-
world data. Even though the extraction might remain tractable, the needed post-
processing and interpretation phases turn out to be tedious or even impossible.
Indeed, in noisy data, not only the number of formal concepts explodes but
also many of them are not relevant enough. It has motivated new directions
of research where interesting bi-sets are considered as dense rectangles of true
values [2, 14, 13, 3, 19].

In this paper, we consider a constraint-based mining approach for relevant
fault-tolerant formal concept mining. We decided to look for an adequate for-
malization for three of our recent proposals (i.e., CBS [2], FBS [19], and DRBS
[3]) which have been motivated by a declarative specification for fault-tolerance.
We do not provide the algorithms which have been recently published for solving
inductive queries on such patterns [2, 19, 3]. The contribution of this paper is to
propose a simple framework to support a better understanding of the needed

1 We might say combinatorial rectangles since it is up to arbitrary permutations of
rows and columns in the Boolean matrix.

Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data 57

trade-off between extraction feasibility, completeness, relevance, and ease of in-
terpretation of these various pattern types. This formalization enables to predict
part of the behavior of the associated solvers and some formal properties can
be established. An original empirical evaluation on both synthetic and real-life
medical data is given. It enables to compare the pros and cons of each proposal.
An outcome of these experiments is that fault-tolerant bi-set mining is possible.
Used in conjunction with other user-defined constraints, it should support the
dissemination of relevant local set pattern discovery techniques for intrinsically
noisy data.

Section 2 provides the needed definitions. Section 3 presents a discussion on
some important properties that fault-tolerant bi-set mining should satisfy. Sec-
tion 4 provides not only experimental results on synthetic data when various
levels of noise are added but also experiments on a real-life medical dataset.
Section 5 is a short conclusion.

2 Pattern Domains

We now define the different classes of patterns to be studied in this paper.
Assume a set of objects O = {t1, . . . , tm} and a set of Boolean properties P =
{g1, . . . , gn}. The Boolean context to be mined is r ⊆ O × P, where rij = 1 if
property gj is satisfied by object ti, 0 otherwise. Formally, a bi-set is an element
(X,Y) where X ⊆ O and Y ⊆ P. L = 2O × 2P denotes the search space for
bi-sets. We say that a bi-set (X,Y) is included in a bi-set (X ′, Y ′) (denoted
(X,Y) ⊆ (X ′, Y ′)) iff (X ⊆ X ′ ∧ Y ⊆ Y ′).

Definition 1. Let us denote by Zl(x, Y) the number of false values of a row x on
the columns in Y : Zl(x, Y) = 	{y ∈ Y |(x, y) �∈ r} where 	 denotes the cardinality
of a set. Similarly, Zc(y,X) = 	{x ∈ X|(x, y) �∈ r} denotes the number of false
values of a column y on the rows in X.

Let us now give an original definition of formal concepts (see, e.g., [24] for a
classical one). Sub-constraint 2.1 expresses that a formal concept contains only
true values. Sub-constraint 2.2 denotes that formal concept relevancy is enhanced
by a maximality property.

Definition 2 (FC). A bi-set (X,Y) ∈ L is a formal concept in r iff
(2.1) ∀x ∈ X, Zl(x, Y) = 0 ∧ ∀y ∈ Y, Zc(y,X) = 0
(2.2) ∀x ∈ O \X, Zl(x, Y) ≥ 1 ∧ ∀y ∈ P \ Y, Zc(y,X) ≥ 1.

Example 1. Given r1, we have Zl(t6, {g4, g5, g6}) = 1 and Zc(g5,O) = 2.
({t3, t4, t6, t7}, {g4, g5}) and ({t3, t4}, {g4, g5, g6}) are FC patterns (see Table 2).

Let us now define the so-called DRBS, CBS and FBS fault tolerant patterns.

Definition 3 (DRBS [3]). Given integer parameters δ and ε, a bi-set (X,Y) ∈
L is called a DRBS pattern (Dense and Relevant Bi-Set) in r iff

58 J. Besson et al.

Table 2. A row permutation on r1 to illustrate Example 1

g1 g2 g3 g4 g5 g6 g7

t3 0 1 1 1 1 1 1
t4 0 0 0 1 1 1 0
t6 1 1 1 1 1 0 0
t7 1 1 1 1 1 0 0
t1 1 0 1 0 1 0 0
t2 1 1 1 1 0 1 0
t5 1 0 0 0 0 1 0

(3.1) ∀x ∈ X, Zl(x, Y) ≤ δ ∧ ∀y ∈ Y, Zc(y,X) ≤ δ
(3.2) ∀e ∈ O \X, ∀x ∈ X, Zl(e, Y) ≥ Zl(x, Y) + ε

∧ ∀e′ ∈ P \ Y, ∀y ∈ Y, Zc(e′, X) ≥ Zc(y,X) + ε
(3.3) It is maximal, i.e., �(X ′, Y ′) ∈ L s.t. (X ′, Y ′) is a DRBS pattern and
(X,Y) ⊆ (X ′, Y ′).

DRBS patterns have at most δ false values per row and per column (Sub-
constraint 3.1) and are such that each outside row (resp. column) has at least
ε false values plus the maximal number of false values on the inside rows (resp.
columns) according to Sub-constraint 3.2. The size of a DRBS pattern increases
with δ such that when δ > 0, it happens that several bi-sets are included in each
other. Only maximal bi-sets are kept (Sub-constraint 3.3). Notice that δ and ε
can take different values on rows and on columns.

Property 1. When δ = 0 and ε = 1, DRBS ≡ FC.

Example 2. If δ = ε = 1, (X,Y) = ({t1, t2, t3, t4, t6, t7}, {g3, g4, g5}) is a
DRBS pattern in r1. Columns g1, g2, g6 and g7 contain at least two false values
on X, and t5 contains three false values on Y (see Table 3).

Table 3. A row permutation on r1 to illustrate Example 2

g1 g2 g3 g4 g5 g6 g7

t1 1 0 1 0 1 0 0
t2 1 1 1 1 0 1 0
t3 0 1 1 1 1 1 1
t4 0 0 0 1 1 1 0
t6 1 1 1 1 1 0 0
t7 1 1 1 1 1 0 0
t5 1 0 0 0 0 1 0

The whole collection of DRBS can be computed (in rather small datasets) by
using the correct and complete algorithm DR-Miner described in [3]. It is a
generic algorithm for bi-set constraint-based mining which is an adaptation of
Dual-Miner [9]. It is based on an enumeration strategy of bi-sets which enables

Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data 59

efficient anti-monotonic and monotonic pruning (Sub-constraint 3.1 in conjunc-
tion with other user-defined constraints which have monotonicity properties),
and partial pruning for Sub-constraint 3.2. Sub-constraint 3.3 is checked in a
post-processing phase.

We now consider a preliminary approach for specifying symmetrical fault-
tolerant formal concepts. Indeed, DRBS class has been designed afterwards.

Definition 4 (CBS [2]). Given an integer parameter δ, a bi-set (X,Y) ∈ L is
called a CBS pattern (Consistent Bi-Set) iff
(4.1) ∀x ∈ X, Zl(x, Y) ≤ δ ∧ ∀y ∈ Y, Zc(y,X) ≤ δ
(4.2) No row (resp. column) outside (X,Y) is identical to a row (resp. column)
inside (X,Y)
(4.3) It is maximal, i.e., �(X ′, Y ′) ∈ L s.t. (X ′, Y ′) is a CBS pattern and
(X,Y) ⊆ (X ′, Y ′).

Notice that again, parameter δ can be chosen with different values on rows and
on columns.

Example 3. If δ = 1, (X,Y) = ({t1, t2, t3, t6, t7}, {g1, g3, g5}) is a CBS pattern
in r1. Columns g6 and g7 contain more than one false value on X, t4 and t5
contain more than one false value on Y . g2 and g4 contain only one false value,
but as they are identical on X, either we add both or they are both excluded. As
there are two false values on t1, we do not add them (see Table 4).

Table 4. A row and column permutation on r1 to illustrate Example 3

g1 g3 g5 g2 g4 g6 g7

t1 1 1 1 0 0 0 0
t2 1 1 0 1 1 1 0
t3 0 1 1 1 1 1 1
t6 1 1 1 1 1 0 0
t7 1 1 1 1 1 0 0
t4 0 0 1 0 1 1 0
t5 1 0 0 0 0 1 0

Property 2. When δ = 0, CBS ≡ FC. Furthermore, when ε = 1, each DRBS
pattern is included in one of the CBS patterns.

In [2], the authors propose an algorithm for computing CBS patterns by merging
formal concepts which have been extracted beforehand. The obtained bi-sets are
then processed to keep only the maximal ones having less than δ false values per
row and per column. This principle is however incomplete: every bi-set which
satisfies the above constraints can not be extracted by this principle. In other
terms, some CBS patterns can not be obtained as a merge between two formal
concepts. CBS patterns might be extracted by a straightforward adaptation of
the DR-Miner generic algorithm but the price to pay for completeness would
be too expensive.

60 J. Besson et al.

Let us finally consider another extension of formal concepts which is not
symmetrical. It has been designed thanks to some previous work on one of the
few approximate condensed representations of frequent sets, the so-called δ-free
sets [7, 8]. δ-free sets are well-specified sets whose counted frequencies enable
to infer the frequency of many sets (sets included in their so-called δ-closures)
without further counting but with a bounded error. When δ = 0, the 0-closure on
a 0-free set X is the classical closure and it provides a closed set. The idea is to
consider bi-sets built on δ-free sets with the intuition that it will provide strong
associations between sets of rows and sets of columns. It has been introduced for
the first time in [19] as a potentially interesting local pattern type for bi-cluster
characterization.

Providing details on δ-freeness and δ-closures is beyond the objective of this
paper (see [7, 8] for details). We just give here an intuitive definition of these
notions. A set Y ⊆ P is δ-free for a positive integer δ if its absolute frequency
in r differs from the frequency of all its strict subsets by at least δ + 1. For
instance, in r1, {g2} is a 1-free set. The δ-closure of a set Y ⊆ P is the superset
Z of Y such that every added property (∈ Z \ Y) is almost always true for the
objects which satisfy the properties from Y : at most δ false values are enabled.
For instance, the 1-closure of {g2} is {g1, g2, g3, g4, g5}. It is possible to consider
bi-sets which can be built on δ-free sets and their δ-closures on one hand, on the
sets of objects which support the δ-free set on the properties on the other hand.

Definition 5 (FBS). A bi-set (X,Y) ∈ L is a FBS pattern (Free-set based
Bi-Set) iff Y can be decomposed into Y = K ∪ C such that K is a δ-free set
in r, C is its associated δ-closure and X = {t ∈ O | ∀k ∈ K, (t, k) ∈ r}. By
construction, ∀y ∈ Y, Zc(y,X) ≤ δ and ∀y ∈ K,Zc(y,X) = 0.

Property 3. When δ = 0, FBS ≡ FC.

Example 4. If δ = 1, {g2} is a δ-free set and ({t2, t3, t6, t7}, {g1, g2, g3, g4, g5})
is a FBS pattern in r1. Another one is ({t3, t4}, {g2, g3, g4, g5, g6, g7}). Notice
that we get at most one false value per column but we have three false values on
t4 (see Table 5).

Table 5. A row permutation on r1 to illustrate Example 4

g1 g2 g3 g4 g5 g6 g7

t2 1 1 1 1 0 1 0
t3 0 1 1 1 1 1 1
t6 1 1 1 1 1 0 0
t7 1 1 1 1 1 0 0
t1 1 0 1 0 1 0 0
t4 0 0 0 1 1 1 0
t5 1 0 0 0 0 1 0

The extraction of FBS can be extremely efficient thanks to δ-freeness anti-
monotonicity. The implementation described in [8] can be straightforwardly ex-
tended to output FBS patterns. Notice that FBS patterns are bi-sets with a

Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data 61

bounded number of exception per column but every bi-set with a bounded num-
ber of exception per column is not necessarily a FBS pattern. An example of a
bi-set with at most 1 false value per column which is not a FBS pattern in r1 is
({t1, t2, t3, t4, t6, t7}, {g3, g4, g5}).

3 Discussion

This section discusses the desired properties for formal concept extensions to-
wards fault-tolerant patterns. It enables to consider the pros and the cons of the
available proposals and to better understand related open problems.

• Fault tolerance: Can we control the number of false values inside the bi-sets?
• Relevancy: Are they consistent w.r.t. the outside rows and columns? At least
two views on consistency exist. We might say that a bi-set B is weakly consistent
if it is maximal and if we have no row (resp. column) outside B identical to one
row (resp. column) inside B. B is called strongly consistent if we have no row
(resp. column) outside B with at most the same number of false values than one
row (resp. column) of B.
• Ease of interpretation: For each bi-set (X,Y), does it exist a function which
associates X and Y or even better a Galois connection? If a function exists which
associates to each set X (resp. Y) at most a unique set Y (resp. X), the inter-
pretation of each bi-set is much easier. Furthermore, it is interesting that such
functions are monotonically decreasing, i.e., when the size of X (resp. Y) in-
creases, the size of its associated set Y (resp. X) decreases. Such a property is
meaningful: the more we have rows inside a bi-set, the less there are columns
that can be associated to describe them (or vice versa). One of the appreci-
ated properties of formal concepts is clearly the existence of such functions. If
f1(X, r) = {g ∈ P | ∀t ∈ X, (t, g) ∈ r} and f2(Y, r) = {t ∈ O | ∀g ∈ Y, (t, g) ∈ r},
(f1, f2) is a Galois connection between O and P: f1 and f2 are decreasing func-
tions w.r.t. set inclusion.
• Completeness and efficiency: Can we compute the whole collection of spec-
ified bi-sets, i.e., can we ensure a completeness w.r.t. the specified constraints?
Is it tractable in practice?

The formal concepts satisfy these properties except the first one. Indeed, we
have an explicit Galois connection which enables to compute the complete col-
lection in many datasets of interest. These bi-sets are maximal and consistent
but they are not fault-tolerant.

In a FBS pattern, the number of false values are only bounded on columns.
The definition of this pattern is not symmetrical. They are not strongly con-
sistent because we can have rows outside the bi-set with the same number of
false values than a row inside (one of this false value must be on the δ-free set
supporting set). On the columns, the property is satisfied. These bi-sets are how-
ever weakly consistent. There is no function from column to row sets (e.g., using
δ = 1 in r1, ({t2, t6, t7}, {g1, g2, g3, g4, g5}) and ({t1, t6, t7}, {g1, g2, g3, g4, g5})
are two FBS with the same set of columns, see Table 6 left). However, we have

62 J. Besson et al.

Table 6. Illustration of the lack of function for FBS (left) and CBS (right)

g1 g2 g3 g4 g5 g6 g7

t1 1 0 1 0 1 0 0
t6 1 1 1 1 1 0 0
t7 1 1 1 1 1 0 0
t2 1 1 1 1 0 1 0
t3 0 1 1 1 1 1 1
t4 0 0 0 1 1 1 0
t5 1 0 0 0 0 1 0

g2 g3 g4 g1

t1 0 1 0 1
t2 1 1 1 1
t3 1 1 1 0
t4 0 0 1 0

a function between 2O to 2P . In many datasets, including huge and dense ones,
complete collections of FBS can be extracted efficiently. Further research is
needed for a better characterization of more relevant FBS patterns which might
remain easy to extract from huge databases, e.g., what is the impact of different
δ-thresholds for the δ-free-set part and the δ-closure computation? how can we
avoid an unfortunate distribution of the false values among the same rows?

CBS are symmetrical on rows and columns. Indeed, the number of exceptions
is bounded on rows and on columns. CBS are weakly consistent but not strongly
consistent (see Example 3). There are neither a function from 2O to 2P nor from
2P to 2O (e.g., ({t1, t2, t3, t4}, {g1, g3, g4}) and ({t1, t2, t3, t4}, {g2, g3, g4}) are
two CBS with δ = 2 having the same set of rows in Table 6 right). According
to the implementation in [2], extracting these patterns can be untractable even
in rather small datasets and this extraction strategy is not complete w.r.t. the
specified constraints.

By definition, a DRBS has a bounded number of exceptions per row and per
column and they are strongly consistent. Two new properties can be considered.

Property 4 (Existence of functions φ and ψ on DRBS (ε > 0)). For
ε > 0, DRBS patterns are embedded by two functions φ (resp. ψ) which associate
to X (resp. Y) a unique set Y (resp. X).

Property 5 (Monotonicity of φ and ψ on DRBS (δ fixed)). Let Lδ,ε the
collection of DRBS patterns and L′

ττ ′ the subset of Lδ,ε s.t. (X,Y) ∈ L′
ττ ′ iff

(X,Y) contains at least a row (resp. column) with τ (resp. τ ′) false values in Y
(resp. X), and such that no row (resp. column) contains more. Then, φ and ψ
are decreasing functions on L′

ττ ′ .

Unfortunately, the functions loose this property on the whole DRBS collection.
Furthermore, we did not identified yet an intensional definition of these functions.
As a result, it leads to a quite expensive computation of the complete collec-
tion. Looking for such functions is clearly one of the main challenges for further
work.

4 Related Work

There are only few papers which propose definitions of set patterns with excep-
tions. To the best of our knowledge, most of the related work has concerned

Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data 63

mono-dimensional patterns and/or the use of heuristic techniques. In [25], the
frequent set mining task is extended towards fault-tolerance: given a threshold ε,
an itemset P holds in a transaction X iff 	(X∩P) ≥ (1−ε)	P , where 	X denotes
the size of X. A level-wise algorithm is proposed but their fault-tolerant prop-
erty is not anti-monotonic while this is crucially needed to achieve tractability.
Therefore, [25] provides a greedy algorithm leading to an incomplete computa-
tion. [22] revisits this work and it looks for an anti-monotonic constraint such
that a level-wise algorithm can provide every set whose density of 1 values is
greater than δ in at least σ situations. Anti-monotonicity is obtained by en-
forcing that every subset of extracted sets satisfies the constraint as well. The
extension of such dense sets to dense bi-sets is difficult: the connection which
associates objects to properties and vice-versa is not decreasing while this is an
appreciated property of formal concepts.

Instead of using a relative density definition, [18] considers an absolute thresh-
old to define fault-tolerant frequent patterns: given a threshold δ, a set of columns
P , such that 	P > δ, holds in a row X iff 	(X ∩P) ≥ 	P − δ. To ensure that the
support is significant for each column, they use a minimum support threshold
per column beside the classical minimum support. Thus, each row of an ex-
tracted pattern contains less than δ false values and each column contains more
true values than the given minimum support for each column. This definition is
not symmetrical and the more the support increases, the less the patterns are
relevant.

In [14], the authors are interested in geometrical tiles (i.e., dense bi-sets which
involve contiguous elements given predefined orders on both dimensions). To ex-
tract them, they propose a local optimization algorithm which is not determinis-
tic and thus can not guarantee the global quality of the extracted patterns. The
hypothesis on built-in orders can not be accepted on many Boolean datasets.

Co-clustering (or bi-clustering) can be also applied to extract fault-tolerant
bi-clusters [11, 20] from boolean data. It provides linked partitions on both
dimensions and tend to compute rectangles with mainly true (resp. false) val-
ues. Heuristic techniques (i.e., local optimization) enable to compute one bi-
partition, i.e., a quite restrictive collection of dense bi-sets. In fact, bi-clustering
provides a global structure over the data while fault-tolerant formal concepts
are typical local patterns. In other terms, these bi-sets are relevant but they
constitute a quite restrictive collection of dense bi-sets which lack from formal
properties.

5 Empirical Evaluation

In this section we investigate on the added-value of fault-tolerant pattern mining
by considering experiments on both synthetic and “real world” data. For each
experiment, we compare the formal concept mining algorithm output with the
fault-tolerant approaches. The goal is not to assess the supremacy of a single class
over the other ones, but to present an overview of the principal pros and cons
of each approach in practical applications. First, we process artificially noised
datasets to extract formal concepts and the three types of fault-tolerant bi-sets.

64 J. Besson et al.

Then, we mine a “real world” medical dataset to get various collections of bi-sets
for different parameters. Besides evaluating the performances and the size of the
collections, we analyze the relevancy of the extracted bi-sets.

5.1 Experiments on Artificially Noised Data

Let us first discuss the evaluation method. We call r2 a reference data set, i.e.,
a dataset which is supposed to be noise free and contains built-in patterns.
Then, we derive various datasets from it by adding some quantity of uniform
random noise (i.e., for a X% noise level, each value is randomly changed with
a probability of X%). Our goal is to compare the collection of formal concepts
holding in the reference dataset with several collections of fault-tolerant formal
concepts extracted from the noised matrices.

To measure the relevancy of each extracted collection (Ce) w.r.t the reference
one (Cr), we test the presence of a subset of the reference collection in each
of them. Since both sets of objects and properties of each formal concept can
be changed when noise is introduced, we identify those having the largest area
in common with the reference. Our measure, called σ, takes into account the
common area and is defined as follows:

σ(Cr, Ce) =
ρ(Cr, Ce) + ρ(Ce, Cr)

2

where ρ is computed as follows:

ρ(C1, C2) =
1

	C1
∑

(Xi,Yi)∈C1

max
(Xj ,Yj)∈C2

	(Xi ∩Xj) + 	(Yi ∩ Yj)
	(Xi ∪Xj) + 	(Yi ∪ Yj)

Here, Cr is the collection of formal concepts computed on the reference dataset,
Ce is a collection of patterns in a noised dataset. When ρ(Cr, Ce) = 1, all the
bi-sets belonging to Cr have identical instances in the collection Ce. Analogously,
when ρ(Ce, Cr) = 1, all the bi-sets belonging to Ce have identical instances in the
collection Cr. Indeed, when σ = 1, the two collections are identical. High values
of σ, mean not only that we can find all the formal concepts of the reference
collection in the noised matrix, but also that the noised collection does not
contain many bi-sets that are too different from the reference ones.

In this experiment, r2 concerns 30 objects (rows) and 15 properties (columns)
and it contains 3 formal concepts of the same size which are pair-wise dis-
joint. In other terms, the formal concepts in r2 are ({t1, . . . , t10}, {g1, . . . , g5}),
({t11, . . . , t20}, {g6, . . . , g10}), and ({t21, . . . , t30}, {g11, . . . , g15}). Then, we gen-
erated 40 different datasets by adding to r2 increasing quantities of noise (from
1% to 40% of the matrix). A robust technique should be able to capture the
three formal concepts even in presence of noise. Therefore, for each dataset, we
have extracted a collection of formal concepts and different collections of fault-
tolerant patterns with different parameters. For FBS collection, we considered
δ values between 1 and 6. Then we extracted two groups of CBS collections
given parameter δ (resp. δ′) for the maximum number of false values per row

Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data 65

Fig. 1. Size of different collections of bi-sets and related values of σ w.r.t. noise level
for all types of bi-sets

(resp. per column): one with δ = 1 and δ′ = 1 . . . 3 and the second with δ′ = 1
and δ = 1 . . . 3. Finally we extracted DRBS collections for each combination of
δ = 1 . . . 3 and ε = 1 . . . 3.

In Fig. 1, we only report the best results w.r.t. σ for each class of patterns.
Fig. 1A provides the number of extracted patterns in each collection. Fault-
tolerant bi-set collections contain almost always less patterns than the collection
of formal concepts. The only exception is the CBS class when δ = 1. The DRBS
class performs better than the other ones. The size of its collections is almost
constant, even for rather high levels of noise. The discriminant parameter is ε.
In Fig. 1B, the values of the σ measure for DRBS collections obviously decrease
when the noise ratio increases. In general, every class of fault-tolerant bi-set

66 J. Besson et al.

Fig. 2. Size of different collections of bi-sets and related values of σ w.r.t. noise level
for different instances of DRBS collections

performs better than the formal concept one. In terms of relevancy, the DRBS
pattern class gives the best results as well. Notice that the results for FBS and
CBS classes are not significantly different when their parameters change. The
parameter that has the greatest impact on σ value for the DRBS patterns is ε.
For reasonable levels of noise (< 15%), it makes sense to use DRBS. For higher
levels, CBS and FBS perform slightly better.

In Fig. 2, we report the experiments on the extraction of DRBS collections
with δ = 3 and ε = 1 . . . 3. Fig. 2A shows the number of extracted patterns. The
size of the collections is drastically reduced when ε grows. Fig. 2B provides the
σ measure for these collections. Using a higher ε value improves the quality of
the results because less patterns are produced. When the noise level is smaller

Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data 67

than 5%, the collection of DRBS, with ε = 2..3, is the same as the three formal
concepts holding in r2. This experiment confirms that fault-tolerant bi-sets are
more robust to noise than formal concepts, and that the provided collection for
the crucially needed expert-driven interpretation is considerably reduced.

5.2 Experiments on a Medical Dataset

It is important to get a qualitative feedback about fault-tolerant pattern rel-
evancy in a real dataset. For this purpose, we have considered the real world
medical dataset meningitis [12]. These data have been gathered from children
hospitalized for acute meningitis over a period of 4 years. The pre-processed
Boolean dataset is composed of 329 patients described by 60 Boolean properties
encoding clinical signs (e.g., consciousness troubles), cytochemical analysis of the
cerebrospinal fluid (e.g., C.S.F proteins) and blood analysis (e.g., sedimentation
rate). The majority of the cases are viral infections, whereas about one quarter
of the cases are caused by bacteria. It is interesting to look at the bacterial cases
since they need treatment with suitable antibiotics, while for the viral cases a
simple medical supervision is sufficient. A certain number of attribute-variable
pairs have been identified as being characteristic of the bacterial form of menin-
gitis [12, 21]. In other terms, the quality of the fault-tolerant patterns can be
evaluated w.r.t. available medical knowledge. Our idea is that by looking for
rather large fault-tolerant bi-sets, the algorithms will provide some new asso-
ciations between attribute-value pairs (Boolean properties) and objects. If the
whole sets of objects and properties within bi-sets are compatible (e.g., all the
objects are of bacterial type, and all the properties are compatible with bacterial
meningitis), then we can argue that we got new relevant information.

A straightforward approach to avoid some irrelevant patterns and to reduce
the pattern collection size is to use size constraints on bi-set components. For
this experiment, we enforce a minimal size of 10 for sets of objects and 5 for
sets of properties. Using D-Miner [4], we computed the collection of such large
enough formal concepts and we got more than 300 000 formal concepts in a

Table 7. Size and extraction time for FBS and DRBS in meningitis

Formal Concepts
size 354 366
time 5s

FBS
δ 1 2 3 4 5 6

size 141 983 67 898 39 536 25 851 18 035 13 382
time 19s 10s 6s 4s 3s 2s

DRBS (δ=1)
ε 1 2 3 4 5 6

size - 75 378 22 882 8 810 4 164 2 021
time - 1507s 857s 424s 233s 140s

68 J. Besson et al.

relatively short time (see Table 7). It is obviously hard to exploit such a quantity
of patterns. For instance, we were not able to post-process this collection to
produce CBS patterns according to [2].

Then,we tried to extract different collections ofFBS andDRBS. ForFBS, with
δ = 1 (at most one exception per column), we got a 60% reduction on the size of
the computed bi-sets. Using values of δ between 2 and 6, this size is reduced at each
step by a coefficient between 0.5 and 0.3. Finally, we used DR-Miner to extract
different collections of DRBS. The δ parameter was set to 1 (at most one exception
per row and per column) and we used the parameter ε to further reduce the size
of the computed collection. Setting ε = 1 leads to an untractable extraction but,
with ε = 2, the resulting collection is 80% smaller than the related formal concept
collection. Moreover, with δ = 1 and ε = 2 the size of the DRBS collection is much
smaller than the computed FBS collection for the same constraint (i.e., δ = 1). On
the other hand, computational times are sensibly higher.

We now consider relevancy issues. We have been looking for bi-sets containing
the property “presence of bacteria detected in C.S.F. bacteriological analysis”
with at least one exception. This property is typically true in the bacterial type
of meningitis [12, 21]. By looking for bi-sets satisfying such a constraint, we ex-
pect to obtain associations between bacterial meningitis objects and properties
characterizing this class of meningitis. We analyzed the collection of FBS when
δ = 1. We got 763 FBS that satisfy the chosen constraint. Among these, 124
FBS contain only one viral meningitis object. We got no FBS containing more
than one viral object. Properties belonging to these FBS are either characteris-
tic features of the bacterial cases or non discriminant (but compatible) features
such as the age and sex of the patient. When δ = 2, the number of FBS satis-
fying the constraint is 925. Among them, 260 contain at least one viral case of
meningitis, and about 25 FBS contain more than one viral case. For δ = 5 the
obtained bi-sets are no longer relevant, i.e., the exceptions include contradictory
Boolean properties (e.g., presence and absence of bacteria). We performed the
same analysis on DRBS for ε = 2. We found 24 rather large DRBS. Among
them, 2 contain also one viral object. Only one DRBS seems irrelevant: it con-
tains 3 viral and 8 bacterial cases. Looking at its Boolean properties, we noticed
that they were not known as discriminant w.r.t. the bacterial meningitis. If we
analyze the collection obtained for ε = 3, there is only one DRBS satisfying
the constraint. It is a rather large bi-set involving 11 Boolean properties and 14
objects. All the 14 objects belong to the bacterial class and the 11 properties
are compatible with the bacterial condition of meningitis. It appears that using
DRBS instead of FBS leads to a smaller number of relevant bi-sets for our anal-
ysis task (24 against 763). Notice however that DRBS are larger than FBS (for
an identical number of exceptions): it means that the information provided by
several FBS patterns might be incorporated in only one DRBS pattern. More-
over we got no DRBS pattern whose set of properties is included in the set of
properties of another one. This is not the case for FBS.

To summarize this experiment, let us first note that using size constraints to
reduce the size of the collection is not always sufficient. meningitis is a rather

Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data 69

small dataset which leads to the extraction of several hundreds of thousands of
formal concepts (about 700 000 if no constraint is given). By extracting fault-
tolerant bi-sets, we reduce the size of the collection to be interpreted and this is
crucial for the targeted exploratory knowledge discovery processes. In particular,
for DRBS, the ε parameter is more stringent than the δ parameter. Then, the
relevancy of the extracted patterns can be improved if a reasonable number of
exceptions is allowed. For instance, extracting FBS with a low δ (1 or 2) leads
to relevant associations while a high δ (e.g., 5) introduces too many irrelevant
bi-sets. From this point of view, the DRBS class leads to the most interesting
results and their quality can be improved by tuning the ε parameter. On the
other hand, FBS are easier to compute, even in rather hard contexts, while
computing DRBS remains untractable in many cases.

5.3 Post-experiment Discussion

Both experiments have shown the advantages of using a fault-tolerant bi-set
mining technique in noisy data. Let us emphasize that adding minimal size
constraints on both dimensions to fault-tolerance constraints is useful: it ensures
that the number of false values is quite small w.r.t. the bi-set size. It enables to
speed up the mining process as well because such constraints can be exploited
for efficient search space pruning.

Using CBS might be a good choice when a relatively small collection of formal
concepts is already available. When data are dense or significantly correlated,
such as in meningitis, CBS mining fails even in relatively small matrices. In this
case, we can use either FBS or DRBS. Experiments have shown that the second
class gives more relevant results and that DRBS pattern collection sizes tend
to be significantly smaller. Trigging the ε parameter enables to further reduce
the collection size while preserving relevancy. The problem is however that this
task turns out to be untractable for large matrices. On the other hand, FBS can
be rather easily extracted but their semantics is not symmetrical and it affects
their relevancy. A post-processing step might be used to eliminate all the bi-sets
which do not satisfy the maximum error constraint on rows.

6 Conclusion

We have discussed a fundamental limitation of formal concept mining to cap-
ture strong associations between sets of objects and sets of properties in pos-
sibly large and noisy Boolean datasets. Relevancy issues are crucial to avoid
too many irrelevant patterns during the targeted data mining processes. It is
challenging to alleviate the expensive interpretation phases while still promot-
ing unexpectedness of the discovered (local) patterns. The lack of consensual
extensions of formal concepts towards fault-tolerance has given rise to several
ad-hoc proposals. Considering three recent proposals, we have formalized fault-
tolerant bi-dimensional pattern mining within a constraint-based approach. It
has been useful for a better understanding of the needed trade-off between
extraction feasibility, completeness, relevancy, and ease of interpretation. An

70 J. Besson et al.

empirical evaluation on both synthetic and real-life medical data has been given.
It shows that fault-tolerant formal concept mining is possible and this should
have an impact on the dissemination of local set pattern discovery techniques in
intrinsically noisy Boolean data. DRBS pattern class appears as a well-designed
class but the price to pay is computational complexity. The good news are that
(a) the submitted inductive queries on DRBS patterns might involve further
user-defined constraints which can be used for efficient pruning, and (b) one can
look for more efficient data structures and thus a more efficient implementation
of the DR-Miner generic algorithm. A pragmatic usage of available algorithms
is indeed to extract some bi-sets, e.g., formal concepts, and then select some of
them (say B = (X,Y)) for further extensions towards fault-tolerant patterns:
it becomes, e.g., the computation of a DRBS pattern (say B′ = (X ′, Y ′) such
that the constraint B ⊆ B′ is enforced. Also, a better characterization of FBS
pattern class might be useful for huge database processing.

Acknowledgements. The authors thank P. François and B. Crémilleux who
provided meningitis. J. Besson’s work is funded by INRA. This research is partly
funded by ACI CNRS MD 46 Bingo and by EU contract IQ FP6-516169 (FET
arm of the IST programme).

References

1. C. Antunes and A.L. Oliveira. Constraint relaxations for discovering unknown
sequential patterns. In Revised selected and invited papers KDID’04, volume 3377
of LNCS, pages 11–32. Springer-Verlag, 2005.

2. J. Besson, C. Robardet, and J-F. Boulicaut. Mining formal concepts with a
bounded number of exceptions from transactional data. In Revised selected and
invited papers KDID’04, volume 3377 of LNCS, pages 33–45. Springer-Verlag, 2004.

3. J. Besson, C. Robardet, and J-F. Boulicaut. Approximation de collections de
concepts formels par des bi-ensembles denses et pertinents. In Proceedings CAp
2005, pages 313–328. PUG, 2005. An extended and revised version in English is
submitted to a journal.

4. J. Besson, C. Robardet, J-F. Boulicaut, and S. Rome. Constraint-based concept
mining and its application to microarray data analysis. Intelligent Data Analysis,
9(1):59–82, 2005.

5. M. Bistarelli and F. Bonchi. Interestingness is not a dichotomy: introducing softness
in constrained pattern mining. In Proceedings PKDD’05, volume 3721 of LNCS,
pages 22–33. Springer-Verlag, 2005.

6. J-F. Boulicaut. Inductive databases and multiple uses of frequent itemsets: the
cInQ approach. In Database Technologies for Data Mining - Discovering Knowledge
with Inductive Queries, volume 2682 of LNCS, pages 1–23. Springer-Verlag, 2004.

7. J-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of frequency queries
by mean of free-sets. In Proceedings PKDD’00, volume 1910 of LNAI, pages 75–85.
Springer-Verlag, 2000.

8. J-F. Boulicaut, A. Bykowski, and C. Rigotti. Free-sets: a condensed representation
of boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery journal, 7 (1):5–22, 2003.

Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data 71

9. C. Bucila, J. E. Gehrke, D. Kifer, and W. White. Dualminer: A dual-pruning
algorithm for itemsets with constraints. Data Mining and Knowledge Discovery
journal, 7 (4):241–272, 2003.

10. L. De Raedt. A perspective on inductive databases. SIGKDD Explorations,
4(2):69–77, 2003.

11. I. S. Dhillon, S. Mallela, and D. S. Modha. Information-theoretic co-clustering.
In Proceedings ACM SIGKDD 2003, pages 89–98, Washington, USA, 2003. ACM
Press.

12. P. François, C. Robert, B. Cremilleux, C. Bucharles, and J. Demongeot. Variables
processing in expert system building: application to the aetiological diagnosis of
infantile meningitis. Med Inform, 15(2):115–124, 1990.

13. F. Geerts, B. Goethals, and T. Mielikäinen. Tiling databases. In Proceedings
DS’04, volume 3245 of LNAI, pages 278–289. Springer-Verlag, 2004.

14. A. Gionis, H. Mannila, and J. K. Seppänen. Geometric and combinatorial tiles in
0-1 data. In Proceedings PKDD’04, volume 3202 of LNAI, pages 173–184. Springer-
Verlag, 2004.

15. B. Goethals and M. Zaki. Proceedings of the IEEE ICDM Workshop on Frequent
Itemset Mining Implementations FIMI 2003. CEUR-WS, Melbourne, USA, 2003.

16. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Communications of the ACM, 39(11):58–64, 1996.

17. S. O. Kuznetsov and S. A. Obiedkov. Comparing performance of algorithms for
generating concept lattices. Journal of Experimental and Theoretical Artificial
Intelligence, 14 (2-3):189–216, 2002.

18. J. Pei, A. K. H. Tung, and J. Han. Fault-tolerant frequent pattern mining: Problems
and challenges. In SIGMOD wokshop DMKD. ACM workshop, 2001.

19. R. Pensa and J-F. Boulicaut. From local pattern mining to relevant bi-cluster
characterization. In Proceedings IDA’05, volume 3646 of LNCS, pages 293–304.
Springer-Verlag, 2005.

20. R. G. Pensa, C. Robardet, and J.-F. Boulicaut. A bi-clustering framework for
categorical data. In Proceedings PKDD’05, volume 3721 of LNCS, pages 643–650.
Springer-Verlag, 2005.

21. C. Robardet, B. Crémilleux, and J.-F. Boulicaut. Characterization of unsupervized
clusters by means of the simplest association rules: an application for child’s menin-
gitis. In Proceedings IDAMAP’02 co-located with ECAI’02, pages 61–66, Lyon, F,
2002.

22. J. K. Seppänen and H. Mannila. Dense itemsets. In Proceedings ACM SIGKDD’04,
pages 683–688, Seattle, USA, 2004. ACM Press.

23. G. Stumme, R. Taouil, Y. Bastide, N. Pasqier, and L. Lakhal. Computing iceberg
concept lattices with TITANIC. Journal of Data and Knowledge Engineering, 42
(2):189–222, 2002.

24. R. Wille. Restructuring lattice theory: an approach based on hierarchies of con-
cepts. In I. Rival, editor, Ordered sets, pages 445–470. Reidel, 1982.

25. C. Yang, U. Fayyad, and P. S. Bradley. Efficient discovery of error-tolerant frequent
itemsets in high dimensions. In Proceedings ACM SIGKDD’01, pages 194–203.
ACM Press, 2001.

Experiment Databases: A Novel Methodology
for Experimental Research

Hendrik Blockeel

Katholieke Universiteit Leuven, Department of Computer Science,
Celestijnenlaan 200A, 3001 Leuven, Belgium

Hendrik.Blockeel@cs.kuleuven.be

Abstract. Data mining and machine learning are experimental sci-
ences: a lot of insight in the behaviour of algorithms is obtained by im-
plementing them and studying how they behave when run on datasets.
However, such experiments are often not as extensive and systematic as
they ideally would be, and therefore the experimental results must be
interpreted with caution. In this paper we present a new experimental
methodology that is based on the concept of “experiment databases”. An
experiment database can be seen as a special kind of inductive database,
and the experimental methodology consists of filling and then querying
this database. We show that the novel methodology has numerous ad-
vantages over the existing one. As such, this paper presents a novel and
interesting application of inductive databases that may have a significant
impact on experimental research in machine learning and data mining.

1 Introduction

Data mining and machine learning are experimental sciences: much insight in
the behaviour of algorithms is obtained by implementing them and studying
their behaviour on specific datasets. E.g., one might run different learners using
different algorithms to see which approach works best on a particular dataset.
Or one may try to obtain insight into which kind of learners work best on which
kind of datasets, or for which parameter settings a parametrized learner performs
best on a certain task.

Such experimental research is difficult to interpret. When one learner performs
better than another on a few datasets, how generalizable is this result? The reason
for a difference in performance may be in the parameter settings used, it may be
due to certain properties of the datasets, etc. Similarly, when we vary one parame-
ter in the hope of understanding its effect on the learner’s performance, any effect
we notice might in fact be specific for this dataset or application; it might be due
to interaction with other, uncontrolled, effects; and even if we eliminate this inter-
action by keeping the values for other parameters fixed, perhaps the effect would
have been different with other values for those parameters.

As a consequence of this complex situation, overly general conclusions are
sometimes drawn. For instance, it has recently been shown [5] that the relative
performance of different learners depends on the size of the dataset they are used

F. Bonchi and J.-F. Boulicaut (Eds.): KDID 2005, LNCS 3933, pp. 72–85, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Experiment Databases: A Novel Methodology for Experimental Research 73

on. Consequently, any comparative results obtained in the literature that do not
take dataset size explicitly into account (which is probably the large majority)
are to be interpreted with caution.

Clearly, the methodology usually followed for experimental research in ma-
chine learning has its drawbacks. In this paper we present a new methodology
that avoids these drawbacks and allows a much cleaner interpretation of results.
It is based on the concept of experiment databases. An experiment database
can be seen as a kind of inductive database, and the methodology we propose
essentially consists of querying this database for patterns. As such, this paper
presents a novel and potentially interesting application of inductive databases
that may have a significant impact on how experimental research in machine
learning and data mining is conducted in the future.

We present the basic ideas of the approach, but many details are left open
and there remain several interesting questions for further research.

We will first give an overview of the shortcomings and caveats of the classical
experimental methodology (Section 2), then we introduce informally the con-
cept of experiment databases and show how they can be used (Section 3). We
summarize our conclusions in Section 4.

2 The Classical Experimental Methodology

Let us look at a typical case of an experimental comparison of algorithms. A
realistic setup of the experiments is:

– A number of datasets is chosen; these may be existing benchmarks, or syn-
thetic datasets with specific built-in properties (for instance, one may want
to control the skewness of the class distribution in the dataset).

– On all of these datasets, a number of algorithms are run. These algorithms
may have different parameter settings; typically they are run with “suitable”
(not necessarily optimal) parameters.

– Certain performance criteria are measured for all these algorithms.

The above methodology, while very often followed, has two important disad-
vantages: the generalizability of the findings is often unclear, and the experiments
are not reusable.

2.1 Unclear Generalizability

The conclusions drawn from experiments may not hold as generally as one might
expect, because the experiments typically cover a limited range of datasets as
well as parameter settings.

Comparisons typically happen on a relatively small number of datasets, in
the range of 1-30. Imagine describing all datasets using a number of proper-
ties such as the number of examples in the dataset, the number of attributes,
the skewedness of the class distribution, the noise level, level of missing values,
etc. Many such properties can be thought of, leading to a description of these

74 H. Blockeel

datasets in a high-dimensional space, let us call it D-space (D for datasets).
Clearly, in such a high-dimensional space, a sample of 1-30 points (datasets) is
extremely sparse. As a consequence, any experimental results obtained with such
a small number of datasets, no matter how thoroughly the experiments have been
performed, are necessarily limited with respect to their generalizability towards
other datasets.

This is not a purely theoretical issue; as we already mentioned, recent work
[5] has shown how the relative performance of different learning algorithms in
terms of predictive accuracy may depend strongly on the size of the dataset.
This sheds a new light on hundreds of scientific papers in machine learning and
data mining. Indeed, many authors implicitly assume the predictive accuracy
of algorithms, relative to each other, to be independent of data set size (or any
other data set parameters, for that matter).

A second possible cause for limited generalizability is that many algorithms
are highly parametrized. Let us call an algorithm with completely instantiated
parameters a ground algorithm. Then typically, a limited number of ground
algorithms is used in the experiments. If, similar to D-space, we define for each
parameterized algorithm or class of algorithms its parameter space (P -space),
then again the experiments involve a very sparse sample from this space, and
the results may not be representative for the average or optimal behaviour of
the algorithm.

An additional problem here is that authors presenting new algorithms often
understand their own algorithm better and may be better at choosing optimal
parameter values for their own approach, putting the existing algorithm at a
small disadvantage.

The above discussion was from viewpoint of comparing algorithms, but the
generalizability problem also occurs when, for instance, the effect of a single
parameter of the algorithm or dataset on the performance of the system is in-
vestigated. For instance, to study the robustness of an algorithm to noise, one
would typically run it on a variety of data sets with increasing noise levels. Using
synthetic datasets in which the noise level can be controlled, it makes sense to
increase the noise level while keeping all other parameters of the data set and
the algorithm constant, and plot performance as a function of the noise level.

Here, too, generalizability is problematic. If we look at such approaches in
D×P -space or P -space, it is clear that by varying one parameter of the dataset
or algorithm, one constructs a sample that lies in a one-dimensional subspace of
the high-dimensional space. The sample is typically dense within this subspace,
but still located in a very limited area of the overall space, so, again, the general-
izability of the results may be low due to this. For instance, one might conclude
that a certain parameter has a large influence on the efficiency of an algorithm,
when in fact this holds only for datasets having certain specific properties.

2.2 No Reusability

In the classical methodology, the experimental setup is typically oriented to-
wards a specific goal. The above example regarding the study of the effect of

Experiment Databases: A Novel Methodology for Experimental Research 75

noise illustrates this: since the researcher knows that she wants to study the
effect of noise, she varies the noise level and nothing else. Such an experimental
setup is clearly goal-oriented. Each time the researcher has a new experimen-
tal hypothesis to be tested or wants to investigate a new effect, this will in-
volve setting up and running new experiments. This obviously takes additional
work. Moreover, there may be practical problems involved. For instance, if there
is a large time span between the original experiments and the newly planned
experiments, certain algorithm implementations may have evolved since the
time of the original experiments, making the new results incompatible with the
old ones.

2.3 Summary

The above problems can be summarized as follows:

1. Experimental results regarding the relative performance of different methods
and the effect that certain parameters of the algorithm or properties of the
dataset have, may have limited generalizability.

2. For each additional experimental hypothesis that is to be investigated, new
experiments must be set up.

We will next show how the use of experiment databases can solve these problems.

3 Experiment Databases

An experiment database (in short, an ExpDB) is a database that contains results
of many random experiments. The experiments in themselves are unfocused; the
focused, goal-oriented experiments mentioned above will be replaced by specific
queries to the database.

In the following, we first describe how the database can be created, and next,
how it can be mined to obtain useful knowledge. For simplicity, we start with
the case where we are interested in the behaviour of a single algorithm. The
extension towards a comparison of multiple algorithms is non-trivial but will
briefly be discussed afterwards.

3.1 Creating an Experiment Database

Assume we have a single algorithm A with a parameter space P . Assume fur-
thermore that some fixed method for describing datasets is given, which gives
rise to a D-space D. (Note that there is a difference between the dataset space
and the D-space; the D-space is an n-dimensional space containing descriptions
of datasets, not the datasets themselves). Finally, we denote with M a set of per-
formance metrics; M may include runtime, predictive accuracy, true and false
positive rates, precision, recall, etc.

We further assume that a dataset generator GD is given. GD generates
datasets at random, according to some distribution over D. This distribution

76 H. Blockeel

need not be uniform (this would be impossible if some parameters are un-
bounded), but it should cover all of D, i.e., for each d ∈ D, the distribution
must assign a non-zero probability to an element “sufficiently close to” d. For
instance, the “dataset size” parameter is continuous but one could choose to use
only the values 10k with k = 2, 3, 4, 5, 6, 7, 8, 9. A dataset generator using these
values could be said to “cover” datasets of a hundred up to a billion instances.

Finally, we assume we have a random generator GP for parameter values
of the algorithm; again this generator should generate values according to a
distribution that covers, in the same sense as above, all of P.

Now we can create a table of experimental results, as follows:

Experiment Database Creation:
Input: A, D, GD, P , GP , M
Output: a table T
Create a table T with attributes from D × P ×M .
for i = 1 to k:

Generate a random data set DS using GD

Let d be the D-space description of DS
Generate random parameter values p according to GP

Run A with parameter values p on DS
Let m be the result of this run in terms of the performance metrics M
Insert a new row containing d, p,m in the table.

The table now contains the results of k random experiments, that is, runs of
algorithm A with random parameters on random datasets. We will discuss later
how large k would need to be for this table to be useful.

A final note regarding the creation of the database: we have assumed that
datasets and algorithm parameters are chosen at random, and we will continue
our discussion under this assumption. However, total randomness is not required;
we require only that the whole D × P -space is covered. As several researchers
have pointed out (personal communication), it may well be possible to do better,
for instance, by filling the table according to experiment design principles. The
analysis we further make on the required size of the table should therefore be
considered a worst-case analysis.

3.2 Mining the Database

We have a database of “random” experiments, but we are in fact interested in
testing specific hypotheses about the behaviour of the algorithm A, or investigat-
ing the influence of certain parameters or dataset properties on A’s performance.

If the table is considered an inductive database and we can query for patterns
in the table, then such knowledge is immediately obtainable in a very straight-
forward way.

Suppose A is some frequent itemset discovery algorithm, and we want to
see the influence of the total number of items in the dataset on A’s runtime.
Assuming NItems (number of items in the dataset) is one dimension of D and
the attribute Runtime is included in M , the following simple SQL query

Experiment Databases: A Novel Methodology for Experimental Research 77

SELECT NItems, Runtime
FROM EXP
SORT BY NItems

gives us the results. (In practice we would of course graphically plot Runtime
against NItems; such a plot can be readily derived from the result of the SQL
query. In this text we are mainly concerned with how the results to be visualized
can be obtained with a query language, rather than the visualization itself.)

The Runtime attribute is of course related to many other parameters, which
vary randomly, and as a result the above query may result in a very jagged plot
(e.g., Runtime for NItems=100 might be larger than Runtime for NItems=1000
just because lower values for the MinSupport parameter were used for the for-
mer). In the classical experimental setting, one would keep all other parameters
equal when one is interested in the effect of the number of items only. For in-
stance, knowing that the minimal support parameter of a frequent itemset min-
ing algorithm typically has a large influence on the run time, one might keep this
parameter fixed at, say, 0.05. This can easily be simulated with our approach:

SELECT NItems, Runtime
FROM EXP
WHERE MinSupport = 0.05
SORT BY NItems

Assuming that GP generates 10 different values for MinSupport, uniformly
distributed, the result of this query is based on roughly 10% of the database.
Compared to the classical setting where the experimenter chooses in advance to
use only MinSupport=0.05, we need to populate the database with 10 times as
many experiments. Figure 1 illustrates how the WHERE constraint gives rise to
fewer points with a clearer trend.

.

.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.

.

.

.

Fig. 1. An impression of what plots would typically look like under different constraints
in the SQL query. The left plot shows a cloud obtained from all data points, the right
plot shows a cloud obtained using MinSupport=0.05. The latter contains a subset of
the former’s points, but with a clearer trend.

Now, as said before, the influence of NItems on Runtime might be different if
we vary other parameters, such as MinSupport. We can easily vary the MinSup-

78 H. Blockeel

port condition in the above query to check whether this is the case. For instance,
using an ad-hoc scripting language that allows to plot query results, and where
we use the notation $x inside an SQL query to refer to the value of a variable x
defined outside the query, we could write

FOR ms = 0.001, 0.005, 0.01, 0.05, 0.1 DO
PLOT
SELECT NItems, Runtime
FROM EXP
WHERE MinSupport = $ms
SORT BY NItems

and get a figure showing different curves indicating the effect of NItems, one for
each value of MinSupport.

In the classical experimental setting, if the experimenter realizes that this
would be a better approach only after having performed the experiments, she
needs to set up new experiments. The total number of experiments will then be
equal to the number of experiments in our database.

From the above discussion, two differences between the classical approach and
the ExpDB approach become clear.

1. In the classical approach, experiments are set up from the beginning to test
a specific hypothesis; to test new hypotheses, new experiments are needed.
With the ExpDB approach, many experiments are run once, in advance,
independent of the goal; to test new hypotheses, new queries are run on the
database.

2. Due to stronger randomization of the experiments, the experiment database
approach tends to yield results in which fewer parameter values are kept con-
stant. This may lead to less convincing (though more generalizable) results.
To some extent, queries can be written so as to counter this effect.

Looking at the above SQL queries, another advantage of the ExpDB approach
becomes clear. As said before, the second query has the advantage of producing
a less jagged curve, in other words, less variance in the results, but this comes
at the cost of obtaining less generalizable results. It is immediately clear from
the form of the second query that the obtained results are for MinSupport=0.05,
whereas in the classical approach this is left implicit. In both queries, nothing
is explicitly assumed about the unmentioned parameters, and indeed in the ac-
tual experiments these parameters get random values and we may assume that
roughly the whole range of values is covered. Thus, these queries explicitly state
how general a result is. The first query yields the most general results (and, as
a consequence, the least conclusive results, as far as the detection of trends or
rejection of hypotheses is concerned). The second query yields results for a more
specific case; the results are more conclusive but may be less generalizable.

3. The ExpDB approach explicitates the conditions under which the results are
valid.

Experiment Databases: A Novel Methodology for Experimental Research 79

What if, at some point, the researcher realizes that besides MinSupport, also
the number of transactions NTrans in the database might influence the effect
of NItems on Runtime? Now the researcher following the classical approach has
several options. He may run new experiments, fixing MinSupport at 0.05 but
now varying NTrans. He might also decide to combine each value of MinSupport
with each value of NTrans, which would give a detailed account of the effect
of both together on Runtime. Or he might randomize the MinSupport setting
while controlling NTrans.

In each case, new experiments are needed. The original experiments are not
usable because the NTrans parameter was not varied. Even if it was varied,
the necessary statistics to test the new hypothesis have not been recorded in
the original experiments because they were not needed for the goal of those
experiments.

The situation is entirely different with the ExpDB approach. The experiment
database was created to be as generally useful as possible; a large number of
statistics, potentially useful for a variety of purposes, have been recorded. When
the researcher wants to test a new hypothesis, he just needs to query the exper-
iment database. In other words, a fixed set of experimental results is re-used for
many different hypothesis tests or other kinds of investigations. This leads us to
a fourth difference:

4. The ExpDB approach is more efficient than the classical approach if multiple
hypotheses will be tested.

Clearly, the ExpDB approach makes controlled experimentation much easier.
As a result, such experimentation can easily be performed in much more depth
than with the classical approach. For instance, classically, higher-order effects
are usually not investigated. Researchers vary one parameter P1 to investigate
its effect, then vary another parameter P2 to investigate its effect. This leads
to the discovery of only so-called marginal effects of the parameters. By varying
P1 and P2 together, one can discover so-called higher order effects; for instance,
one might discover that the effect of P1 on performance is large when P2 is low
but not so large when P2 is high.

With the ad-hoc language introduced before, such interaction can be studied
easily, for instance using the following SQL query:

FOR a=0.01, 0.02, 0.05, 0.1 DO
FOR b = 1000, 10000, 100000, 1000000 DO
PLOT

SELECT NItems, Runtime
FROM EXP
WHERE MinSupport = $a AND $b <= NTrans < 10*$b
SORT BY NItems

This shows that

5. The ExpDB approach makes it easy to perform in-depth analyses of both
marginal and higher-order effects of parameters and dataset properties.

80 H. Blockeel

The inductive database approach, where mining is performed by querying for
patterns using a special-purpose inductive query language [1], allows us to go
further. While the above kind of queries amount to checking manually for the
effects of specific parameters or dataset characteristics, or interactions between
them, one can easily think of more sophisticated data mining approaches that
allow the researcher to ask questions such as “what is the parameter that has the
strongest influence on the predictive accuracy of my decision tree system”, or
“are there any dataset characteristics that interact with the effect of parameter
P on predictive accuracy”, etc. Clearly, inductive database query languages are
needed for this purpose. A possible query would be

SELECT ParName, Var(A) / Avg(V) as Effect
FROM AlgorithmParameters,

SELECT $ParName, Var(Runtime) as V, Avg(Runtime) as A
FROM EXP
GROUP BY $ParName

GROUP BY ParName
SORT BY Effect

This SQL-like query (it is not standard SQL)1 requires some explanation. The
inner SELECT query takes a parameter $ParName (e.g., $ParName = ’MinSup-
port’) and computes the average A and variance V of the runtimes measured for
specific values of $ParName. If $ParName = ’MinSupport’, then the result of the
inner query is a table with attributes MinSupport, A, V, and for each occurring
value of MinSupport the corresponding average runtime is listed as well as the
runtimes’ variance.

The outer SELECT query takes a table AlgorithmParameters that is supposed
to have an attribute ParName. For each value of ParName, the inner query is
instantiated and run. We again use the convention that $ParName refers by
definition to the value of ParName. The result of this construction is a “table”
with attributes ParName, $ParName, A, V. (It is not a standard SQL table
because the second attribute does not have a fixed name.) The SELECT part of
the outer query projects this onto ParName and Effect, sorting the parameters
according to their influence on runtime, where this influence is defined as the
ratio of the variance of the averages of the different groups to the average variance
within these groups.

6. The ExpDB approach, if accompanied by suitable inductive querying lan-
guages, allows for a much more direct kind of questions, along the lines of
“which parameter has most influence on runtime”, instead of finding this out
with repeated specific questions.

A final advantage of the ExpDB approach is their reusability: experiment
databases could be published on the web, so that other researchers can investi-
gate the database in ways not thought of by the original researcher. Currently,
1 The same query could be expressed in standard SQL if the parameter names listed

in ParNames are hardcoded in the query, but this makes the query lengthy and
cumbersome, and less reusable. We prefer this more compact and intuitive notation.

Experiment Databases: A Novel Methodology for Experimental Research 81

the tendency is to make available the datasets themselves, possibly also im-
plementations of systems used, but the actual experiments and conclusions are
described on paper (and sometimes the experimental settings are not described
in sufficient detail for others to reconstruct the experiments exactly). By follow-
ing the ExpDB approach and publishing the experiment database, a detailed
log of the experiments remains available, and it becomes possible for other re-
searchers to, e.g., refine conclusions drawn by previous researchers from these
experiments. It is likely that such refinements would happen less frequently than
is currently the case, exactly because the ExpDB approach enforces a much more
diligent experimental procedure.

7. The ExpDB approach leads to better reusability of experiments and better
reproducibility of results.

3.3 A Summary of the Advantages

We can summarize the advantages of the experiment database approach as follows:

– Efficiency. The same set of runs (of algorithms on datasets) is reused for
many different goal-oriented experiments.

– Generalizability. The generalizability of experimental results in the original
setting is often unclear. With the experiment database approach, due to
randomization of all parameters not under investigation, it is always clear to
what extent results are generalizable. Results are obtained from a relatively
large sample in P ×D-space that covers the whole space, instead of from a
small sample covering a small part of the space.

– Depth of analysis. It is easy to investigate the combined effect of two or more
parameters on some performance metric, or, in general, to check for higher-
order interactions (in the statistical sense) between algorithm parameters,
dataset properties, and performance criteria.

– True data mining capacity. With a suitable query language, one can also ask
questions such as “what algorithm parameters have the most influence on
the accuracy of the algorithm?” (and hence are most important to tune).

– Reusability. Publishing an experimental database guarantees that a detailed
log of the experiments is available. It makes it easier for other researchers to re-
produce the experiments, and it makes it possible for them to investigate other
hypotheses than the ones described by the authors of the experiment database.

3.4 Size of the Table

How large should the number of tuples in the experiment table, k, be? Assume
that we want each point that we plot to be the average of at least e examples
and no parameter or dataset characteristic has more than v values (continuous
variables are discretized). e = 30 and v = 10 are reasonable values. Then we need
to have ve = 300 experiments to measure the effect of any single parameter on
any single performance metric. Measuring the effect while keeping the value of a
single other parameter constant, may require up to v times more data to obtain

82 H. Blockeel

equally precise results (e.g., averaged over 30 measurements); the same holds for
measuring any second-order effects. In general, to measure mth-order effects, we
need evm experiments. Thus, a table listing a few thousand experimental results
is typically enough to perform more thorough experiments than what is typically
done with the classical approach. Note that it is not problematic for the creation
of this table to create hours or even days, as this can be done off-line, possibly
as background computations, and subsequent experimentation will take require
very little time. In this way, assuming the use of reasonably efficient algorithms,
creation of a database of 10,000 to 100,000 experiments is quite feasible.

As mentioned before, this analysis holds for a method where the experiment
database is filled randomly. Following experiment design principles, it may be
possible to improve this number, but we have not looked into this issue yet. The
main conclusion here is that even with the randomized approach, the number of
experiments needed is not prohibitive.

Note that there is always the possibility of filling the database also in a goal-
oriented way, by only generating tuples with specific values for certain attributes.
This defeats part of the purpose of the ExpDB, but makes it possible to build
an ExpDB with exactly the same number of experiments as would have been
needed in the classical setting, while still allowing deeper analysis.

3.5 The Multiple-Algorithm Case

Up till now we have assumed that the experiments recorded in the ExpDB
involve one single algorithm. In practice, it will be useful to build ExpDB’s with
information on multiple algorithms.

One problem that then arises, is that different algorithms typically have dif-
ferent sets of parameters. As a result, there exists no elegant schema for the
single table we considered up till now.

A solution is to have multiple tables for describing parameter settings, where
each class of algorithms has its own different table and schema. An example
is shown in Figure 2. This necessitates a relational data mining approach [2].
The SQL-like “mining” approach that we have discussed before is not limited
to querying a single experiment table, and hence simple queries can be asked to
compare for instance the best-case, worst-case, average-case behaviour of differ-
ent algorithms, possibly with constraints on the parameters of the algorithms
and datasets. For instance, the query

SELECT AVG(s.Accuracy) - AVG(t.Accuracy),
VAR(s.Accuracy), VAR(t.Accuracy)

FROM (ExpDB JOIN Alg1) s , (ExpDB JOIN Alg2) t
WHERE Alg1.C=0 and Examples < 1000

for the database schema shown in Figure 2 compares the average and variance
of the accuracy of algorithms Alg1 and Alg2 under the constraint that Alg1’s C
parameter is 0 (e.g., the default), on datasets of less than one thousand examples.

An alternative to this approach could be to define a generic description of algo-
rithms: a so-called A-space, in which any algorithm is described using algorithm-

Experiment Databases: A Novel Methodology for Experimental Research 83

ExpDB
ExpID Attr Examples Target Complexity Runtime Accuracy

Alg1 Alg2
ExpID A B C D ExpID A B E F

Fig. 2. Schema for an experiment database containing data for two algorithms Alg1
and Alg2 with different parameters

independent properties, similarly to the D-space that describes datasets without
giving full information on the dataset. An advantage would be that one would
be able to detect dependencies between algorithm-independent characteristics of
learners, and the performance on certain kinds of datasets. It is unclear, however,
what kind of characteristics those should be.

3.6 A Connection to Meta-learning

Meta-learning is a subfield of machine learning that is concerned with learning to
understand machine learning algorithms by applying machine learning methods
to obtained experimental results. While our ExpDB approach has been presented
as a way to improve the experimental methodology typically followed by machine
learning and data mining researchers, it is clear that the approach is very suitable
for meta-learning:

– Working with synthetic datasets solves the problem of sparse data that is so
typical of meta-learning. While the UCI repository, for instance, is a sizeable
collection of machine learning problems, from the meta-learning point of
view each UCI dataset yields a single example, so the meta-learning dataset
derived from the UCI repository contains only a few dozen examples. This
makes it difficult to derive any conclusions. A synthetic dataset generator,
such as used in the ExpDB approach, appears crucial for the success of
meta-learning.

– As explained, our approach allows thorough investigation of the interac-
tions between algorithm parameters, dataset characteristics, and perfor-
mance metrics, in addition to allowing a comparison between different kinds
of algorithms.

Conversely, a lot of existing work in meta-learning is very useful for the con-
cept of experiment databases. For instance, significant efforts have been invested
in the description of datasets and algorithms [6, 4] and in methods for generating
synthetic datasets (Soares, Džeroski, personal communication). All of these can
be used to give the work on experiment databases a headstart.

4 Conclusions

We have presented a novel methodology for experimental research in machine
learning and data mining. The methodology makes use of the concept of ex-

84 H. Blockeel

periment databases. The idea behind this is that a database of random ex-
periments is first created, then hypotheses can be tested ad libitum by just
querying the database instead of repeatedly setting up new experiments. The
experiment database approach has many advantages with respect to reusability,
reproducibility and generalizability of results, efficiency of obtaining them, ease
of performing thorough and sophisticated analysis, and explicitness of assump-
tions under which the obtained results are valid.

The current paper is obviously very preliminary; it presents the basic ideas
and promises of experiment databases. There are many open questions, such as:

– The format of the D-space: it is easy to list some characteristics of datasets
that might be useful, but difficult to ensure no important ones are missed.
Some work has already been done on this in the meta-learning community
[4], but we expect further efforts on this may yield more results.

– The dataset generator: such a generator generates data according to a cer-
tain distribution; how do we specify this distribution? For supervised learn-
ers a target concept must be included; how do we generate this target
concept? Information on this concept (e.g., its complexity) is part of the
D-space.

– An inductive query language: In the above we have used an ad hoc language
for inductive queries. It is necessary to define a suitable inductive query lan-
guage for the kind of patterns we are interested in. It is not clear if any of
the existing query languages are suitable; for instance, languages for finding
frequent itemsets or association rules [3] are not immediately applicable. It
seems that a kind of standard SQL that allows the user to mix the meta and
object level in a single query, would be useful.

We believe that further research along the proposed direction has the po-
tential to lead to much better experimental research in machine learning and
data mining, and to ultimately lead to a greatly improved understanding of the
strengths and weaknesses of different approaches.

Acknowledgements

The author is a post-doctoral fellow of the Fund for Scientific Research of
Flanders, Belgium (FWO-Vlaanderen). He thanks Sašo Džeroski, Carlos Soares,
Ashwin Srinivasan, and Joaquin Vanschoren for interesting comments and
suggestions.

References

1. L. De Raedt. A perspective on inductive databases. SIGKDD Explorations, 4(2):69–
77, 2002.

2. S. Džeroski and N. Lavrač, editors. Relational Data Mining. Springer-Verlag, 2001.
3. R. Meo, G. Psaila, and S. Ceri. An extension to SQL for mining association rules

in SQL. Data Mining and Knowledge Discovery, 2:195 – 224, 1998.

Experiment Databases: A Novel Methodology for Experimental Research 85

4. Y. Peng, P. Flach, C. Soares, and P. Brazdil. Improved dataset characterisation
for meta-learning. In Proceedings of the 5th International Conference on Discov-
ery Science, volume 2534 of Lecture Notes in Computer Science, pages 141–152.
Springer-Verlag, 2002.

5. C. Perlich, F. Provost, and J. Siminoff. Tree induction vs. logicstic regression: A
learning curve analysis. Journal of Machine Learning Research, 4:211–255, 2003.

6. B. Pfahringer, H. Bensusan, and C. Giraud-Carrier. Meta-learning by landmarking
various learning algorithms. In Proceedings of the 17th International Conference on
Machine Learning (ICML 2000), pages 743–750. Morgan Kaufmann, 2000.

Quick Inclusion-Exclusion

Toon Calders and Bart Goethals

University of Antwerp, Belgium
{toon.calders, bart.goethals}@ua.ac.be

Abstract. Many data mining algorithms make use of the well-known
Inclusion-Exclusion principle. As a consequence, using this principle ef-
ficiently is crucial for the success of all these algorithms. Especially in
the context of condensed representations, such as NDI, and in comput-
ing interesting measures, a quick inclusion-exclusion algorithm can be
crucial for the performance. In this paper, we give an overview of several
algorithms that depend on the inclusion-exclusion principle and propose
an efficient algorithm to use it and evaluate its complexity. The theoret-
ically obtained results are supported by experimental evaluation of the
quick IE technique in isolation, and of an example application.

1 Introduction

The inclusion-exclusion (IE) principle is well known as it is an important method
for many enumeration problems [8]. Also in many data mining applications this
principle is used regularly. Moreover, as is typical in many data mining ap-
plications, when the formula is used, then it is evaluated many times. Indeed,
data mining algorithms typically traverse huge pattern spaces in which hun-
dreds to millions of potential patterns are evaluated. In this paper, we consider
frequent itemsets and give an overview of several methods to efficiently evalu-
ate the Inclusion-Exclusion formulas in order to obtain the supports of itemsets
containing negated items. This leads us to the Quick Inclusion-Exclusion (QIE)
algorithm, that is based on the same principles as the ADTree structure [13],
and of which we show its efficiency in theory as well as in practice.

First, we shortly revisit the IE-principle and how it connects to itemsets and
data mining.

Let A1, . . . , An be n finite sets. The inclusion-exclusion principle is the fol-
lowing equality:∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
∑

1≤i≤n

|Ai| −
∑

1≤i<j≤n

|Ai ∩Aj |+ . . .− (−1)n

∣∣∣∣∣
n⋂

i=1

Ai

∣∣∣∣∣
We can connect the IE principle with frequent set mining as follows. Let

a generalized itemset be a conjunction of items and negations of items. For
example, G = {a, b, c, d} is a generalized itemset; a, b, and d are the positive
items, and c denotes the negation of c. We will often denote a generalized itemset
X ∪ Y , where X is the set of positive items, and Y the set of items that are

F. Bonchi and J.-F. Boulicaut (Eds.): KDID 2005, LNCS 3933, pp. 86–103, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Quick Inclusion-Exclusion 87

support(abcd) = support(∅) − support(a) − support(b) − support(c) − support(d)

+ support(ab) + support(ac) + support(ad)

+ support(bc) + support(bd) + support(cd)

− support(abc) − support(abd) − support(acd) − support(bcd)

+ support(abcd)

support(abcd) = support(a) − support(ab) − support(ac) − support(ad)

+ support(abc) + support(abd) + support(acd) − support(abcd)

support(abcd) = support(b) − support(ab) − support(bc) − support(bd)

+ support(abc) + support(abd) + support(bcd) − support(abcd)

support(abcd) = support(c) − support(ac) − support(bc) − support(cd)

+ support(abc) + support(acd) + support(bcd) − support(abcd)

support(abcd) = support(d) − support(ad) − support(bd) − support(cd)

+ support(abd) + support(acd) + support(bcd) − support(abcd)

support(abcd) = support(ab) − support(abc) − support(abd) + support(abcd)

support(abcd) = support(ac) − support(abc) − support(acd) + support(abcd)

support(abcd) = support(ad) − support(abd) − support(acd) + support(abcd)

support(abcd) = support(bc) − support(abc) − support(bcd) + support(abcd)

support(abcd) = support(bd) − support(abd) − support(bcd) + support(abcd)

support(abcd) = support(cd) − support(acd) − support(bcd) + support(abcd)

support(abcd) = support(abc) − support(abcd)

support(abcd) = support(abd) − support(abcd)

support(abcd) = support(acd) − support(abcd)

support(abcd) = support(bcd) − support(abcd)

support(abcd) = support(abcd)

Fig. 1. The IE formulas for the itemset abcd

negated. For example, for the generalized itemset {a, b, c, d}, X = {a, b, d} and
Y = {c}. A transaction T is said to contain a general itemset G = X ∪ Y if
X ⊆ T and T ∩ Y = ∅. The support of a generalized itemset G in a database D
is the number of transactions of D that contain G.

We say that a general itemset G = X ∪ Y is based on itemset I if I = X ∪ Y .
From the IE principle [8], we can now derive that for a given general itemset
G = X ∪ Y based on I,

support(G) =
∑

X⊆J⊆I

(−1)|J\X|support(J) . (1)

Indeed; for all y ∈ Y , let Ay denote the set of transactions that contain X ∪ {y}.
Then,

⋃
y∈Y Ay denotes the set of transactions that contain X, and at least one

item of Y . Hence, |
⋃

y∈Y Ay| equals support(X)−support(G). This observation in

88 T. Calders and B. Goethals

combination with IE leads to the equation (1). The collection of formulas to com-
pute the supports of all generalized itemsets based on abcd can be seen in Figure 1.

Note, if the supports of all strict subsets of I are known, from the support of
one generalized itemset based on I, the support of all other generalized itemsets
can be derived.

In the next section, we explain the uses of the IE principle within several
frequent set mining tasks. Then, we present several algorithms that compute the
supports of all generalized itemsets at once and show that the QIE algorithm is
the most efficient algorithm to solve this problem. Several experiments illustrate
the theoretically obtained results in Section 4 after which Section 5 ends with
conclusions and future work.

2 Multiple Uses of IE

2.1 Support Estimation and Bounding

Recently, several techniques have been developed to estimate the support of an
itemset or the confidence of an association rule, based on the given supports
of some sets [10, 11, 12, 14, 16]. The motivation for these techniques comes from
the fact that the traditional support-confidence framework is well-suited to the
market-basket problem, but is less appropriate for other types of transactional
datasets. See, e.g., [16] for an extensive argumentation of this claim. Therefore,
other interestingness measures have been developed.

The main idea is that interesting itemsets are ones that are both frequent
(have required support) and have dependencies between the items. For exam-
ple, consider items a and b. Assume that support measures are translated to
probabilities (by dividing absolute support by number of database records). For
example, P (a) is the percentage of records with item a. To determine whether
items a and b are independent (and hence not correlated), we need to check if
the following 4 equations hold. Measures of correlation are based on the degree
to which these equations are violated.

P (a, b) = P (a)P (b) P (a, b) = P (a)P (b)
P (a, b) = P (a)P (b) P (a, b) = P (a)P (b)

Observe that standard frequent itemset mining algorithms (e.g., Apriori) only
provide information needed to check the first of these equations. However, all is
not lost. Given P (a), P (b), and P (a, b), we can derive exact values for P (a, b),
P (a, b), and P (a, b) by evaluating the Inclusion-Exclusion formulas for these
terms without taking any additional counts.

The following four approaches are examples of similar measures, that also
require the supports of itemsets with negations, and hence for which a quick
inclusion-exclusion algorithm is useful:

– The dependency estimate of Silverstein et al., based on the χ2 test [16].
– The dependence value of Meo, based on maximal entropy [12].

Quick Inclusion-Exclusion 89

– The non-derivable itemsets (NDIs), based on tight support bounding [6].
– The support quota of Savinov [15], combining the dependency values of [12]

and the tight support bounding of [6].

In this paper we will show a method to compute the IE sums in time O(n2n).
This exponential cost may seem unrealistically high for real applications. In re-
ality, however, in the applications we describe, the IE sums need to be computed
mostly for relatively small itemsets. For an empirical proof of the feasibility of
computing IE sums, we refer to the experimental section, where it is shown that
for the computation of NDIs, the exponential cost is reasonable.

We now discuss the four approaches in more detail.

Dependency Estimate. In [16], a χ2-test is used to test the (in)dependence
of items in an itemset. An itemset is only considered interesting if the items
are dependent at a given significance level. The test of dependence is as follows.
First, a contingency table for the itemset is constructed. This contingency ta-
ble contains an entry for every combination of occurence/absence of the items
in the itemset. Hence, the cells in the contingency table are exactly the sup-
ports of every generalized itemset based on the set. This contingency table is
then compared to the estimates for the cells under the assumption of statisti-
cal independence. For the cell holding the support of X ∪ Y , this independence
estimate is

E(X ∪ Y) := |D| ·
∏
x∈X

support({x})
|D| ·

∏
y∈Y

|D| − support({y})
|D| .

Then, the χ2-score is used to quantify the difference between the observed counts
and the estimated counts. This degree of independence for a set I is:

χ2(I) :=
∑

X∪Y based on I

(support(X ∪ Y)− E(X ∪ Y))2

E(X ∪ Y)
.

The set is then called dependent at significance level α if χ2(I) exceeds the cut-off
value χ2

α.
In [16], an algorithm to find all dependent itemsets that also satisfy a support

constraint is given. In this algorithm, the contingency tables are constructed
by scanning the complete database. Because scanning the transaction database
for every candidate separately can be very costly, in [16], the contingency ta-
bles of all candidates at the same level are constructed in one pass over the
database.

The construction of the contingency tables in the algorithm of [16], however,
has two big disadvantages: first, scanning the database can be very costly, espe-
cially for large datasets. Second: the contingency tables grow exponentially with
the size of the itemset. Therefore, maintaining all contingency tables in memory
simultaneously results in gigantic memory requirements. Therefore, we propose
the use of the inclusion-exclusion principle for the construction of the contin-
gency tables instead. Indeed, the cells in the contingency table are exactly the

90 T. Calders and B. Goethals

supports of the generalized itemsets, and, as was shown in the introduction, for
a given set, the support of all its generalized itemsets based can be computed,
based solely on the supports of all its subsets.

Notice that this use of the inclusion-exclusion principle goes far beyond the
algorithm of [16] alone; every algorithm using contingency tables can benefit
from it, and many statistical measures use contingency tables.

Dependency Values. In [12], Meo addresses the following problem with the es-
timate of [16]. A major drawback of the framework proposed in [16] is that in
the estimation of the support of the contingency table entries, only the supports
of the singleton itemsets are used. In this way, it is possible (and even often the
case) that the estimated supports are inconsistent with the supports of itemsets of
higher length. Meo addresses this problem by adopting a maximal entropy model
to estimate the support of an itemset. Let I be an itemset for which we want to es-
timate the support, based on the supports of all its strict subsets. First, the notion
of the entropy of a transaction database is defined. In general, entropy is defined as
a measure on probability distributions. Let Ω = {ω1, . . . , ωm} be a set of possible
outcomes of an experiment. Let X be a probability distribution that assigns prob-
ability pi to ωi, for i = 1 . . . m. The entropy of X is then defined as

∑n
i=1 pi · ln(pi).

To define the entropy of a transaction database, it suffices to regard the database
as a probability distribution. When we are interested in the itemset I, we can view
the database as a probability structure assigning probabilities to the generalized
itemsets based on I. That is, the different generalized itemsets are the “events”,
and their probability is their support divided by the total number of transactions
in the database. From this viewpoint, the entropy of the database when restricted
to the itemset I, denoted EI(D), is defined as

∑
X∪Y based on I

support(X ∪ Y)
|D| · ln

(
support(X ∪ Y)

|D|

)
.

Remember from Section 1, that if we know the supports of all strict subsets of I,
then from the support of I, the support of all generalized itemsets based on I can
be derived. The maximal entropy estimate for the support of I now is the one that
maximizes the entropy EI(D). In [12], based on the maximal entropy estimate, the
notion of Dependence Values of an itemset is defined as the difference of this esti-
mated support and the actual support of the itemset. For the exact details on the
computation, we refer to [12], but for here it suffices that again all IE formulas need
to be computed. In [12], these IE sums are calculated in isolation. This will corre-
spond to our brute force evaluation method which we improve upon significantly in
this paper. As the experiments will show, the gain of the quick inclusion-exclusion
is large, which implies that the application of our quick IE-computation improves
the performance of determining dependence values significantly.

2.2 Non-derivable Itemsets

In [6], tight bounds for an itemset are given for the case in which the supports
of all its subsets are known. That is, from the supports of the strict subsets of

Quick Inclusion-Exclusion 91

I, a lower bound l and an upper bound u are calculated, such that the support
of I must be in the interval [l, u]. A set is considered uninteresting if its lower
bound equals its upper bound, because this equality implies that the support of
the itemset is completely determined by the supports of its subsets. Such a set is
called a derivable itemset. In [6], an algorithm is given to find all non-derivable
itemsets.

The bounds in [6] are based on the inclusion-exclusion principle. Recall the
equality

support(X ∪ Y) =
∑

X⊆J⊆I

(−1)|J\X|support(J) .

Since support(X ∪ Y) is always positive, we get

0 ≤
∑

X⊆J⊆I

(−1)|J\X|support(J) . (2)

In [6], this observation was used to calculate lower and upper bounds on the
support of an itemset I, by isolating support(I) in (2). For each set I, let lI
(uI) denote the lower (upper) bound we can derive using these deduction rules.
That is,

lI = max{−
∑

X⊆J⊂I

(−1)|J\X|support(J) | X ⊆ I, |I \X| odd},

uI = min{
∑

X⊆J⊂I

(−1)|J\X|support(J) | X ⊆ I, |I \X| even}.

Notice that these sums only differ little from the IE-sums we are optimizing.
In fact, the sums coincide when we set support(I) equal to 0. Therefore, our
quick inclusion-exclusion technique directly leads to an efficient procedure for
computation of bounds on the support of an itemset.

Notice that for the bounds in [6], the supports of all subsets of I must be
known. This is often the case (e.g. in levelwise algorithms), but not always.
In these cases, approximate inclusion-exclusion techniques can be used to find
bounds on the support of an itemset. In [7], e.g., bounds on the support of an
itemset are given when the support of all subsets up to a certain size only are
known. These bounds are based on the so-called Bonferoni inequalities, which
are an extension of the inclusion-exclusion principle.

Support Quotas. In [15], Savinov proposes the use of support quotas to im-
prove the performance of mining the dependence rules of [12]. The support quota
of an itemset is defined as the size of the bounding interval for its support as in
[6]. Let [l, u] be the bounds on the support of I. The support of I must always
be in this interval. If the estimate e(I) is consistent with the supports of the
subsets of I, there must exist a database that is consistent with the supports
of all subsets of I, and with support(I) = e(I). For example, the maximum
entropy estimate of [12] is in this case. Therefore, the difference between e(I)
and the actual support of I can maximally be u− l. If u− l is smaller than the

92 T. Calders and B. Goethals

minimal dependence value, the difference between the estimate and the actual
support will be smaller than this threshold as well and hence can be pruned.
Moreover, since the interval width decreases when going from sub- to superset,
all supersets of I can be pruned as well. This is a very interesting situation, as
the dependence value is non-monotonic and thus not allows for pruning super-
sets. By using support bounding, however, an upper bound on the dependence
values can be found that is monotonic. Even though Savinov’s technique was
introduced specifically for the dependence rules of [12], it can be extended to
improve every estimate that is consistent with given supports, leading to yet
another important application of quick IE.

2.3 Condensed Representation

The use of the quick inclusion-exclusion technique goes beyond advanced inter-
esting measures for itemsets. In [11], for example, Mannila et al consider the
collection of frequent sets as a condensed representation that allows to speed up
support counts of arbitrary Boolean expressions over the items. In this context,
the inclusion-exclusion principle can be used as a mean to estimate the support
of arbitrary Boolean formulas based on the support of the frequent itemsets
alone. Our quick IE method can here be used to quickly find the support of all
conjunctive Boolean formulas with negations.

Also when we are only interested in the frequent itemsets, condensed repre-
sentation are very useful, since the collection of all frequent itemsets can already
be far too large to store. In the literature, many different condensed represen-
tations have been studied. In [5], the free sets [3], disjunction-free sets [4], gen-
eralized disjunction-free sets [9], and the non-derivable sets [6] are all shown
to be based on the same support bounding technique which is based on the
inclusion-exclusion formulas. For the exact details of this connection we refer to
[5]. Because of this connection, improving the efficiency of the inclusion-exclusion
computation results in performance gains when constructing one of these con-
densed representations.

3 QIE: The Algorithm

We first start with a formal problem definition.

Definition 1. Let I be an itemset. Suppose that of every subset of I its support
has en given. The IE problem is to compute for every subset X of I, the sum∑

X⊆J⊆I

(−1)|J\X|support(J) .

Obviously, efficiently computing IE is crucial for the success of all previously
discussed methods. Nevertheless, for a given itemset I, there exist 2|I| rules, and
every such rule, with I = X∪Y , consist of 2|Y | terms, resulting in a total number
of terms equal to

Quick Inclusion-Exclusion 93

∑
X⊆I

2|I\X| =
|I|∑
i=0

(
|I|
i

)
2i = 3|I| .

In what follows, we present several techniques to evaluate these rules effi-
ciently. To compare their costs, we assume all itemsets are stored in a trie-like
data structure [2]. Finding the support of a single itemset of size k in such a trie
requires exactly k lookup operations. The cost model we use, assigns a cost of 1
to every lookup operation, and thus a cost of k for the retrieval of the support
of an itemset of size k. In theory, however, this cost is in worst case as high as
log(|I|), but in practice, and with the use of advanced indexing techniques such
as hash tables, the cost of 1 for every lookup operation is realistic. Notice that
we could also hash the itemsets directly, and thus have a cost of O(1) per item-
set that needs to be looked up. Nevertheless, the computation of any reasonable
hash-key will be linear in the size of the set. For one computation this linearity
does not matter and can be omitted from the complexity analysis. In our case,
however, we need to incorporate the fact that this computation needs to be done
for many itemsets.

3.1 Brute Force IE

A brute force algorithm would simply evaluate all rules separately and fetch all
supports one at a time, as shown in Fig. 2.

The total cost of this algorithm is captured in the following Lemma.

Lemma 1. For a given itemset I, with |I| = n, computing the supports of all
generalized itemsets X ∪ Y , with X ∪ Y = I, using the brute force algorithm,
comes down to a cost of 2n3n−1.

Proof. Computing the support of X ∪ Y requires the retrieval of
(|Y |

0

)
sets of

size |X| = k,
(|Y |

1

)
sets of size |X| + 1, . . . ,

(|Y |
|Y |

)
sets of size |X ∪ Y | = |I| = n,

which amounts to

n−k∑
i=0

(
n− k

i

)
(i + k) = (n + k)2n−k−1 .

Require: I ⊆ I, support(J) for all J ⊆ I
Ensure: support(X ∪ Y) for all X∪̇Y = I
1: for all X ⊆ I do
2: support(X ∪ Y) := 0
3: for all J ⊇ X do
4: find support(J)
5: support(X∪Y)+ = (−1)|J\X|support(J)
6: end for
7: end for

Fig. 2. BFIE: Brute Force IE

94 T. Calders and B. Goethals

Thus, evaluating the supports for all X ∪ Y comes down to

n∑
k=0

(
n

k

)
(n + k)2n−k−1 = 2n3n−1 .

3.2 Combined IE

Instead of retrieving the support of all supersets of X separately, this can be
done in a single large retrieval operation combined with the computation of
the support of X ∪ Y . Indeed, the items in X occur in all itemsets we retrieve,
while the items in Y are “optional”. This observation is reflected in the recursive
procedure illustrated in Figure 3.

Initially, the procedure starts in the root node, and scans over the items in
X ∪ Y . If the current item is in X, then it is found among the children of the

Require: Root node n, X ∪ Y
Ensure: support(X ∪ Y)
1: if X ∪ Y is empty then
2: return n.support;
3: end if
4: {Let i be the first item in X ∪ Y }
5: if i in X then
6: X := X \ {i};
7: return CIE(n → i, X ∪ Y);
8: else
9: Y := Y \ {i};

10: return CIE(n, X ∪ Y) − CIE(n → i, X ∪ Y);
11: end if

Fig. 3. CIE: Combined IE for a single support(X ∪ Y)

{}

a b c d

b c d c d d

c d d d

d

Fig. 4. Example trace of combined IE algorithm for a single abcd

Quick Inclusion-Exclusion 95

current node and the procedure recursively continues from this node for the re-
maining items. If the current item is in Y , then the computation is split into
two paths; on one path, the item is ignored, and the procedure recursively con-
tinues from the current node for the remaining items; on the other path, the
item is found among the children of the current node and the procedure recur-
sively continues from this node for the remaining items. In this way, the different
computation paths end up in exactly the supersets of X, the supports are re-
turned and, depending on their cardinality, added or subtracted. In Figure 4,
this procedure is illustrated for the set abcd. The arrows indicate the recursion,
the encircled nodes the itemsets that are summed.

Lemma 2. For a given itemset I, with |I| = n, computing the supports of all
generalized itemsets X ∪ Y , with X ∪ Y = I, using the combined IE algorithm,
comes down to a cost of 2(3n − 2n).

Proof. The total cost of computing the supports of all generalized itemsets con-
sists of the total number of visits to non-root nodes in the itemset trie.

Consider a node in the trie associated with itemset J . This node is visited
in the computation of the support for all generalized itemset X ∪ Y , such that
there is a superset of X that is in the trie below the node for J . Because the
trie below J contains all sets with J as prefix, this means that there must be
a superset of X such that J is a prefix of this superset. Let j be the last item
in the set J . The trie below J contains the supports of all sets J ∪ J ′ with J ′

a subset of {i ∈ I | i > j}. Hence, there exists a superset of X that is below
J in the itemset trie, if and only if X is a subset of J ∪ {i ∈ I | i > j}. Let
m = |{i ∈ I | i < j, i �∈ J}| be the number of so-called “missing items” in J .
The number of times J is visited during the combined IE algorithm depends on
this number of missing items m, and is 2n−m.

To make the total sum of visits, we still need to determine the number of
nodes with m missing items. This number equals

(
n

m+1

)
. Indeed, consider an

itemset with m missing items. This itemset is completely characterized by the
list of the m missing items, and its last item. Therefore, the number of itemsets
with m missing items is exactly the number of combinations of m + 1 out of n.

Combining these two results, the total number of visits to nodes in the trie
can be obtained:

n−1∑
m=0

(
n

m + 1

)
2n−m = 2(3n − 2n) .

3.3 Direct Access

Although the previous method already combines the retrieval of the supports of
several itemsets in a single scan through the itemset trie, this still needs to be
done for every possible subset of I. Fortunately, it is also possible to collect the
support of all subsets of I once, store it in a specialized storage structure, and
access this structure for every set X. Preferably, the specialized structure does
not introduce too much overhead, and allows for fast access to the supports of

96 T. Calders and B. Goethals

the supersets of a set X. These requirements can be met with a simple linear
array, and an indexing pattern based on the bit-pattern of the itemsets. From
now on, we assume that the items of I are ordered.

To store the supports of the subsets of an itemset I, we create an array of
size 2|I|, denoted by A, and the ith entry of A is denoted by A[i]. Then, the
bitpattern of an itemset X ⊆ I, denoted by Xb, is simply the sequence x1 . . . x|I|,
where xj = 1 if ij ∈ X, and xj = 0 otherwise. The index of X is the number
represented by the bitpattern of X. Hence, this index can be used to directly
access the entry in A storing the support of X.

The array structure, and the bitpattern access method have several interesting
properties.

1. Enumerating all subsets of I comes down to a for loop from 0 to 2|I|.
2. The indices of the supersets of a set X can be enumerated by switching some

of the 0-bits to 1 in the bitpattern of X.
3. The order in which the subsets are stored is also known as the reverse pre-

order. This order has the interesting property that, given two sets X,X ′,
such that X ⊆ X ′ ⊆ I, the index of X will be smaller than the index of X ′.
Therefore, we compute the support of X ∪Y in ascending order of the index
of X. After that, we can simply replace the entry containing the support of
X with the support of X∪Y as we do not need its support anymore anyway.

Given this array containing the supports of all subsets of I, we automatically
obtain the naive algorithm that sums for each X ⊂ I, the supports of all super-
sets of X. The exact algorithm is shown in Fig. 5 and illustrated in Figure 6.
The arrows in the figure represent all necessary additions or subtractions.

Thefirst three lines store the support of each subset of I in the array.Then, in line
4, a for-loop traverses each subset X in ascending order of its index. In the nested
for-loop, all supports of all supersets of X are added (subtracted) to the support
of X, resulting in the support of X ∪ I \X, stored at index Xb of the array.

Lemma 3. For a given itemset I, with |I| = n, computing the supports of all
generalized itemsets X ∪ Y , with X∪̇Y = I, using the naive IE algorithm with
direct access to the itemset supports, comes down to a cost of 3n.

Require: I ⊆ I, support(J) for all J ⊆ I
Ensure: support(X ∪ Y) for all X∪̇Y = I
1: for all X ⊆ I do
2: A[Xb] := support(X);
3: end for
4: for i := 1 to 2|I| do
5: {Let X be the itemset for which Xb = i}
6: for all J ⊆ I, such that J ⊃ X do
7: A[i] := A[i] + (−1)|J\X|A[Jb];
8: end for
9: end for

Fig. 5. NIE: Naive IE algorithm using direct access to the itemset supports

Quick Inclusion-Exclusion 97

000 001 010 011 100 101 110 111
{} c b bc a ac ab abc

Fig. 6. Illustration of the naive IE algorithm using direct access to the itemset supports,
for the generalized itemsets based on abc

Proof. Retrieving the supports of all subsets of I has a cost of 2|I|. For each
generalized itemset X∪Y , the IE formulas consist of 2|Y |−1 operations, resulting
in a total of exactly 3|I| − 2|I| operations over all generalized itemsets. Hence,
the total cost equals 2|I| + 3|I| − 2|I| = 3|I|.

Until now, we have mainly concentrated on optimizing the number of costly
retrievals in the itemset trie by introducing an array for the itemset supports with
an efficient indexing structure. In this way, the number of retrieval operations
could be lowered from 3n to 2n. The number of additions, however, remains
3n− 2n. Even though the cost of one addition is negligible compared to the cost
of one retrieval operation, the cost of 3n−2n additions quickly grows far beyond
the cost of 2n retrieval operations.

3.4 Quick IE

The retrieval of the supports of all subsets is not the only operation that can be
shared among the different inclusion-exclusion computations. Indeed, many of
the inclusion- exclusion sums share a considerable number of terms. Therefore, by
sharing part of the computation of the sums, a considerable number of additions
can be saved. For example, consider the sums for abcd and abcd:

abcd = ab− abc− abd + abcd

abcd = a− ab− ac− ad + abc + abd + acd− abcd

Hence, if we first compute support(abcd), and then use

abcd = acd− abcd = a− ac− ad + acd− abcd

we save 3 additions. In general, for a generalized itemset G, and an item a not
in G, the following equality holds:

support(aG) = support(G)− support(aG) .

This fact can now be exploited in a systematic manner as in Fig. 7.

98 T. Calders and B. Goethals

Require: I ⊆ I, support(J) for all J ⊆ I
Ensure: support(X ∪ Y) for all X∪̇Y = I
1: for all X ⊆ I do
2: A[Xb] := support(X);
3: end for
4: for l := 2;l < 2|I|;l := 2l do
5: for i := 1;i < 2|I|; i+ = l do
6: for j := 0 to l − 1 do
7: A[i + j] := A[i + j] − A[i + l/2 + j];
8: end for
9: end for

10: end for

Fig. 7. QIE: Quick IE algorithm

Again, the algorithm starts by filling an array with the supports of all subsets
of I. In the end, the entry for X in the array will contain the support of X ∪ Y ,
with X∪̇Y = I. To get to this support, the entries of A are iteratively updated.
Let I = {i1, . . . , in}. After the jth iteration, the entry for X will contain the
support of the generalized set X ∪ {in−j+1, . . . , in} \X. In other words, in the
jth iteration, the entries for all X that do not contain item in−j+1 are updated
by adding in−j+1 to it, and updating its support accordingly.

For example, let I be the itemset {a, b, c}. Before the procedure starts, array
A contains the following supports:

000 001 010 011 100 101 110 111
{} c b bc a ac ab abc

In the first iteration, item c is handled. This means that in this iterations, the
entries of all sets X that do not contain c are updated to contain the support of
X ∪ c. Hence, after the first iteration, the array contains the following supports:

000 001 010 011 100 101 110 111
c c bc bc ac ac abc abc

In the second iteration, item b is handled. Thus, after the second iteration, the
array contains the following supports:

000 001 010 011 100 101 110 111
bc bc bc bc abc abc abc abc

In the third and last iteration, item a is handled, giving the final array:

000 001 010 011 100 101 110 111
abc abc abc abc abc abc abc abc

Lemma 4. For a given itemset I, with |I| = n, computing the supports of all
generalized itemsets X∪Y , with X∪̇Y = I, using the Quick IE algorithm, comes
down to a cost of 2n + n2n−1.

Quick Inclusion-Exclusion 99

000 001 010 011 100 101 110 111
{} c b bc a ac ab abc

Fig. 8. Visualization of the QIE algorithm

Proof. The first term comes from filling the array with all subsets of I. Then,
for every item i ∈ I, we update all itemsets not containing i, i.e. exactly 2n−1.

Notice that the principle used in QIE, is also used in ADTrees [13], in the more
general context of relations with categorical attributes, in order to speed up the
computation of contingency tables. An ADTree is a datastructure that stored the
counts of some queries over the relation. If now a transaction database is consid-
ered as a relation with binary attributes, and the construction of the ADTree is
slightly modified such that only counts of itemsets are stored, the computation
of a contingency table in ADTree, and the computation of the supports of all
general itemsets by QIE will become very similar.

3.5 Summary

The memory and time requirements of the different methods discussed in this
section are summarized in the following table. n denotes the number of items in
an itemset I, for which the supports of all generalized itemsets based on it are
computed. For the space requirement, we only report the memory required for
the computation, not the input-, or the output size. This choice is motivated by
the fact that the frequent itemsets and their supports can be stored in secondary
storage, and the output can either directly be filtered for patterns meeting a sup-
port threshold, or be written to a database. Hence, the space requirement is the
amount of main memory needed to compute the inclusion-exclusion. Notice also
that reporting the total memory requirement instead would be far less informa-
tive, as it would yield a lower bound of O(2n) for all methods.

Method Space Time
Brute force constant 2n3n−1 = O(n3n)
Combined, no direct access constant 2(3n − 2n) = O(3n)
Combined, direct access O(2n) 3n = O(3n)
QIE O(2n) 2n + n2n−1 = O(n2n)

From this table we can conclude that, if the itemset is small, the QIE method is
clearly the best. In the case, however, that the itemsets are stored in secondary
storage, n is large, and memory is limited, the combined method without direct
access is preferable.

100 T. Calders and B. Goethals

4 Experiments

We implemented the well known Apriori algorithm [1] and adapted it to in-
corporate all proposed techniques for computing the supports of all generalized
itemsets. The experiments were ran on a 1.2 GHz Pentium IV using 1GB of
memory. More specifically, for every candidate itemset, we recorded the amount
of time needed to compute the supports of all generalized itemsets. The results
of this experiment are shown in Figure 9. In this figure, the average running time
per itemset length has been given. The dataset we used for this experiment was
the BMS-Webview-1 dataset donated by Kohavi et al. [17]. We experimented on
several datasets as well, but only report on BMS-Webview-1, as these figures are
independent of the dataset used. As expected, the algorithms behave as shown
in theory. (Note the logarithmic y axes.)

10-6

10-5

10-4

10-3

10-2

10-1

100

101

 2 4 6 8 10 12 14

T
im

e
(s

ec
)

itemset size

BFIE
CIE
NIE
QIE

Fig. 9. Time needed to compute the generalized itemsets

For further evaluation, we also implemented the presented techniques in our
NDI implementation to see what the effect would be in a real application.
We performed our experimented on the BMS-Webview-1 and BMS-Webview-
2 datasets [17], and the results turned out to be very nice. The results are
shown in Figure 10 for BMS-Webview-1 and in Figure 11 for BMS-Webview-2.
We only show the results for the NIE and QIE algorithm as these are the two
fastest.

Although Non-Derivable Itemsets are shown to be small in general [6], and
the computation of the IE formulas in the candidate generation phase is only a
small part of the total cost of the algorithm, we observe remarkable speedups

Quick Inclusion-Exclusion 101

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 25 30 35 40 45

T
im

e
(s

ec
)

minimum support

NIE
QIE

Fig. 10. Peformance improvement of the NDI algorithm for BMS-Webview-1

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 5 10 15 20 25 30 35 40 45 50

T
im

e
(s

ec
)

minimum support

NIE
QIE

Fig. 11. Peformance improvement of the NDI algorithm for BMS-Webview-2

showing the applicability for the proposed QIE algorithm. For example, in BMS-
Webview-1, for the lowest threshold, a speedup of more that 200 seconds was
obtained.

102 T. Calders and B. Goethals

5 Conclusion

We presented an overview of algorithms to compute the supports of so called
generalized itemsets, i.e. itemsets in which items are allowed to be negated. We
explained how this can be done without going back to the database, using the
principle of Inclusion-Exclusion. We showed that many data mining applications
could benefit from this principle in case an efficient algorithm existed. The QIE
algorithm is theoretically and experimentally shown to be extremely efficient
compared to several other techniques.

References

1. R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In J.B.
Bocca, M. Jarke, and C. Zaniolo, editors, Proceedings 20th International Conference
on Very Large Data Bases, pages 487–499. Morgan Kaufmann, 1994.

2. C. Borgelt and R. Kruse. Induction of association rules: Apriori implementa-
tion. In W. Härdle and B. Rönz, editors, Proceedings of the 15th Conference on
Computational Statistics, pages 395–400, http://fuzzy.cs.uni-magdeburg.de/
∼borgelt/software.html, 2002. Physica-Verlag.

3. J.-F. Boulicaut, A. Bykowski, and C. Rigotti. Approximation of frequency queries
by means of free-sets. In Proc. PKDD Int. Conf. Principles of Data Mining and
Knowledge Discovery, pages 75–85, 2000.

4. A. Bykowski and C. Rigotti. A condensed representation to find frequent patterns.
In Proc. PODS Int. Conf. Principles of Database Systems, 2001.

5. T. Calders and B. Goethals. Minimal k-free representations of frequent sets. In
Proc. PKDD Int. Conf. Principles of Data Mining and Knowledge Discovery, pages
71–82, 2002.

6. T. Calders and B. Goethals. Mining all non-derivable frequent itemsets. In Proc.
PKDD Int. Conf. Principles of Data Mining and Knowledge Discovery, pages 74–
85. Springer, 2002.

7. S. Jaroszewicz and D. A. Simivici. Support approximations using bonferroni-type
inequalities. In Proc. PKDD Int. Conf. Principles of Data Mining and Knowledge
Discovery, pages 212–224, 2002.

8. D.E. Knuth. Fundamental Algorithms. Addison-Wesley, Reading, Massachusetts,
1997.

9. M. Kryszkiewicz and M. Gajek. Why to apply generalized disjunction-free gen-
erators representation of frequent patterns? In Proc. International Syposium on
Methodologies for Intelligent Systems, pages 382–392, 2002.

10. H. Mannila. Local and global methods in data mining: Basic techniques and open
problems. In ICALP 2002, 29th International Colloquium on Automata, Lan-
guages, and Programming, 2002.

11. H. Mannila and H. Toivonen. Multiple uses of frequent sets and condensed repre-
sentations. In Proc. KDD Int. Conf. Knowledge Discovery in Databases, 1996.

12. R. Meo. Theory of dependence values. ACM Trans. on Database Systems,
25(3):380–406, 2000.

13. A. Moore and M.S. Lee. Cached sufficient statistics for efficient machine learning
with large datasets. Journal of Artificial Intelligence Research, 8:67–91, 1998.

Quick Inclusion-Exclusion 103

14. D. Pavlov, H. Mannila, and P. Smyth. Beyond independence: Probabilistic models
for query approximation on binary transaction data. IEEE Trans. on Knowledge
and Data Engineering, 15(6):1409–1421, 2003.

15. A. Savinov. Mining dependence rules by finding largest support quota. In ACM
Symposium on Applied Computing, pages 525–529, 2004.

16. Craig Silverstein, Sergey Brin, and Rajeev Motwani. Beyond market baskets: Gen-
eralizing association rules to dependence rules. Data Mining and Knowledge Dis-
covery, 2(1):39–68, 1998.

17. Z. Zheng, R. Kohavi, and L. Mason. Real world performance of association rule
algorithms. In Proc. KDD Int. Conf. Knowledge Discovery in Databases, pages
401–406. ACM Press, 2001.

Towards Mining Frequent Queries
in Star Schemes

Tao-Yuan Jen1, Dominique Laurent1, Nicolas Spyratos2, and Oumar Sy1,3

1 LICP, Université de Cergy-Pontoise, 95302 Cergy-Pontoise Cedex, France
{tao-yuan.jen, dominique.laurent}@dept-info.u-cergy.fr

2 LRI, Université Paris 11, 91405 Orsay Cedex, France
spyratos@lri.fr

3 Université Gaston Berger, Saint-Louis, Senegal
oumar.sy@ugb.sn

Abstract. The problem of mining all frequent queries in a database is
intractable, even if we consider conjunctive queries only. In this paper,
we study this problem under reasonable restrictions on the database,
namely: (i) the database scheme is a star scheme; (ii) the data in the
database satisfies a set of functional dependencies and a set of referential
constraints.

We note that star schemes are considered to be the most appropriate
schemes for data warehouses, while functional dependencies and referen-
tial constraints are the most common constraints that one encounters in
real databases. Our approach is based on the weak instance semantics
of databases and considers the class of selection-projection queries over
weak instances. In such a context, we show that frequent queries can be
mined using level-wise algorithms such as Apriori.

1 Introduction

The general problem of mining all frequent queries in a (relational) database,
i.e., all queries whose answer has a cardinality above a given threshold, is known
to be intractable, even if we consider conjunctive queries only [9].

However, mining all frequent queries from a database allows for the generation
of rules that cannot be easily obtained, even by approaches dealing with multiple
tables, such as in [4, 6, 7, 11, 15, 16]. This is so because, in these approaches, for
a given mining query, frequent queries are mined over the same scheme in one
single table. The following example, that serves as a running example throughout
the paper, illustrates this point.

Example 1. Let Δ be a database containing the tables Cust, Prod and Sales,
concerning customers, products and sales, respectively, and suppose that:

– the table Cust is defined over the attributes Cid, Cname and Caddr, stand-
ing respectively for the identifiers, the names and the addresses of customers,

– the table Prod is defined over the attributes Pid and Ptype, standing re-
spectively for the identifiers and the types of products,

F. Bonchi and J.-F. Boulicaut (Eds.): KDID 2005, LNCS 3933, pp. 104–123, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Towards Mining Frequent Queries in Star Schemes 105

– the table Sales is defined over the attributes Cid, Pid and Qty where Qty
stands for the numbers of products bought by customers, characterized by
their identifiers Pid and Cid, respectively.

If all frequent queries in Δ can be mined, then it is possible to mine a “rule” such
as: At least 80% of the customers living in Paris buy at least 75% of products
of type beer, or in other words: At least 80% of all Parisian customers buy beer,
and at least 75% of all beers have at least one Parisian customer.

Denoting respectively by S and S′ the selection conditions Caddr = Paris
and Ptype = beer, this is stated by the facts that the queries

– q1 = πCid(σS(Cust)), q2 = πCid(σS∧S′(Cust �� Prod �� Sales)),
– q3 = πPid(σS′(Prod)), q4 = πPid(σS∧S′(Cust �� Prod �� Sales))

are frequent (i.e., the cardinalities of their answers are greater than or equal to
a given threshold), and that the confidences of the rules (i.e., the ratios of the
supports of the right-hand sides over the supports of the left-hand sides) q1 ⇒ q2
and q3 ⇒ q4 are greater than or equal to 80% and 75%, respectively.

Note that since q1 and q2 (respectively q3 and q4) involve different tables over
different schemes, customers (respectively beers) with no transactions are taken
into account, which is not possible if only the join is considered. �

In this paper, we study the problem of mining all frequent queries in a database
under restrictions that are met in data warehousing. Indeed, data warehouses
are generally organized according to star schemes, over which constraints such
as functional dependencies and referential dependencies hold. We show that for
databases over star schemes, all frequent projection-selection-join queries can be
computed based on any level-wise algorithm such as Apriori [1].

In our formalism, a database Δ satisfying a set FD of functional depen-
dencies is represented by its weak instance, denoted by ΔFD [17]. Roughly
speaking, ΔFD is a table defined over the set U of all attributes, whose tuples
may contain null values. We consider all queries q of the form σS(π↓

X(ΔFD)),
where S is a conjunction of selection conditions, X is any set of attributes
and π↓

X(ΔFD) is the total projection of ΔFD over X (the total porjection
over X is defined as the set of all restrictions of tuples containing no null
values).

Given such a query q, the answer in Δ, denoted by ansΔ(q), is the set of all
tuples in π↓

X(ΔFD) that satisfy the selection condition S. We define the support
of q in Δ, denoted by supΔ(q), to be the cardinality of ansΔ(q).

Example 2. Referring back to Example 1, assume that the table Cust satisfies
the functional dependencies Cid → Cname and Cid → Caddr, Prod satisfies
Pid→ Ptype and Sales satisfies Cid, P id→ Qty. Then, Cid (respectively Pid)
is the key of the table Cust (respectively Prod), and the key of the table Sales
is the union of the keys of the tables Cust and Prod. Thus, the scheme of Δ is
a star scheme in which the fact table is Sales, the measure is Qty and the two
dimension tables are Cust and Prod.

106 T.-Y. Jen et al.

Denoting by FD the set of functional dependencies given above, we consider
the weak instance ΔFD of Δ and we “adapt” the queries q1, q2, q3 and q4 of
Example 1 to this setting. The resulting queries q′1, q′2, q′3 and q′4 are the following:

– q′1 = σS(π↓
Cid,Caddr(ΔFD)), q′2 = σS∧S′(π↓

Cid,Caddr,P type(ΔFD)),
– q′3 = σS′(π↓

Pid,P type(ΔFD)), q′4 = σS∧S′(π↓
Caddr,P id,P type(ΔFD)),

where S and S′ are as in Example 1.
We note that, although the four queries above involve the same table ΔFD,

they involve different projections. Hence, the computation of the supports (and
thus of the confidences) takes into account the fact that there may exist cus-
tomers (respectively beers) whose identifiers occur in the table Cust (respectively
Prod) but not in the table Sales. �
As we shall see, if the scheme of Δ is a star scheme, then the problem of mining
all frequent conjunctive queries can be treated according to the following two
steps, each of them being based on a level-wise algorithm such as Apriori [1]:

Step 1: compute all frequent queries of the form π↓
X(ΔFD).

Step 2: for each relation scheme X such that π↓
X(ΔFD) is frequent, compute all

frequent queries of the form σS(π↓
X(ΔFD)), where S is a conjunction of selection

conditions of the form A = a with A in X and a is in dom(A).

In this paper, we provide the theoretical framework for achieving the previous
two steps, and in particular, we show that by taking the functional dependencies
into account, queries with the same support can be characterized independently
from the database instance. Moreover, we give algorithms and experimental re-
sults for Step 1, whereas the implementation of Step 2 is left to future work.

The paper is organized as follows: In Section 2, we briefly review previous work
dealing with the problem of mining frequent queries in a relational database, and
in Section 3, we recall the basics of weak instance semantics and of star schemes.
Section 4 deals with the queries that are of interest in our approach. In Section
5, algorithms for the computation of Step 1 above are presented and experiments
are reported. In Section 6 further issues are discussed, and Section 7 concludes
the paper and presents some issues for future work.

2 Related Work

To our knowledge, except in [9, 10], no other work addresses the general problem
of computing all frequent queries in a given database. The work in [9] considers
conjunctive queries, as we do in this paper and points out that considering no
restrictions on the database scheme and no functional dependencies leads to
a non tractable complexity. Although some hints on possible restrictions are
mentioned in [9], no specific case is actually studied.

We note that in [10], the authors consider restrictions on the frequent queries
to be mined using the formalism of rule based languages. Restrictions are put
mainly on the number of atoms in the body of the rules and on variables occur-
ring in the heads of the rules. Although we do not consider such restrictions, we

Towards Mining Frequent Queries in Star Schemes 107

note that, in our approach, a query cannot involve more than one occurrence of
every table present in the database. On the other hand, restrictions on variables
in [10] roughly correspond to joins, projections and selections, as we do in this
paper. Although more queries than in our approach are considered in [10], it
should be pointed out that:

1. In [10], equivalent queries can be generated, which can not be tested effi-
ciently and which does not happen in our approach.

2. Constraints such as functional dependencies and referential constraints are
not taken into account in [10], as we do in this paper.

In [4], a set of attributes, called the key, provides the set of values according to
which the supports are to be counted. Then, using a bias language, the different
tables involving the key attributes are mined, based on a level-wise algorithm.
Our approach (as well as that of [10]) can be seen as a generalization of the work
in [4], in the sense that we mine all frequent conjunctive projection-selection-
join queries for all keys. Notice that, in [4], joins are performed during the
mining phase, whereas, in our approach, joins are somehow pre-computed in the
weak instance. In this respect, it is important to note that, in our approach,
functional dependencies are used to compute the joins, as well as to optimize
the computation of frequent queries.

The work of [7] follows roughly the same strategy as in [4], except that joins
are first performed in a level-wise manner, and for each join, conjunctive selection
frequent queries are mined, based also on a level-wise algorithm.

All other approaches dealing with mining frequent queries in multi-relational
databases [6, 11, 15, 16] consider a fixed set of “objects” to be counted during the
mining phase and only one table for a given mining task. For instance, in [16],
objects are (eventually partially) characterized by values over given attributes,
whereas in [6], objects are characterized by a query, called the reference. Then,
frequent queries are mined in one table that is defined by a query. We also note
that, except for [16], all these approaches are restricted to conjunctive queries,
as is the case in the present paper.

We refer to [5] for a more detailed comparison of the approaches presented
in [4, 6, 7, 11, 15, 16]. The important thing to note is that all these works mine
frequent queries according to a fixed set of “objects”. Consequently, in order
to mine rules as in Example 1 in these approaches, several minig queries are
necessary, since such rules refer to different sets of “objects”. In our approach,
all frequent projection-join queries referring to any set of “objects” are mined
through one single mining query, and then these queries are used as a basis for
the computation of all frequent conjunctive projection-selection-join queries.

The approach of [3] is also related to our work because data cubes and star
schemes both deal with multi dimensional data. However, the frequent queries
considered in [3] involve the fact table only. Thus, contrary to our approach, it
is not possible to mine frequent queries defined on any set of attributes. How-
ever, hierarchies are taken into account in [3], which is not the case in our
approach.

108 T.-Y. Jen et al.

3 Background

In this section, we recall briefly some basic notions related to the relational model
of databases, universal relation scheme interfaces and star schemes.

Following [17] we consider a universe of attributes U , in which every attribute
A is associated with a set of values called its domain and denoted by dom(A);
a relational database scheme consists of a set S of tables τ1, . . . , τn, where each
table τi is associated with an attribute set, called the scheme of τi and denoted
by sch(τi); a relational database over S associates each table τi with a finite set
of tuples over sch(τi).

3.1 Universal Relation Scheme Interfaces

Universal relation scheme interfaces were introduced in the early 80s in order to
provide logical independence to the relational model. Given a database Δ over a
universe of attributes U and a set of functional dependencies FD over U , logical
independence is achieved by associating the pair (Δ,FD) to a single table over
U , denoted by ΔFD, and called the weak instance of Δ.

Without loss of generality ([2]), we assume that all functional dependencies in
FD are of the form X → A where X is a relation scheme and A is an attribute
of U not in X. The table ΔFD is computed using the following procedure, called
the chase procedure [17]:

1. Initialization. Build a table ΔU over universe U as follows:
For every tuple t over X appearing in Δ, define a tuple tU over U such that
for every A in U , tU .A = t.A if A ∈ X and tU .A = wi otherwise, where wi

is a null value not appearing in ΔU ; insert tU into ΔU .
2. Iteration. While ΔU changes do the following:

For every X → A in FD, for all tuples tU and t′U in ΔU such that tU .X =
t′U .X do
(a) if tU .A and t′U .A are two distinct constants, then stop (in this case,

(Δ,FD) is inconsistent)
(b) if tU .A is the constant a and t′U .A the null value wi then replace wi by

a in t′U
(c) if tU .A is the null value wi and t′U .A the null value wj and if wi �= wj

then replace wj by wi in t′U .

If (Δ,FD) is consistent (i.e., case (a) above did not occur), then the output of
this procedure, denoted by ΔFD, is called the weak instance of Δ and FD.

Following the weak instance model, the table ΔFD is the only table to which
queries on Δ are addressed. More precisely, for every relation scheme X, let
π↓

X(ΔFD) denote the set of all tuples t over X such that (i) t contains no null
value, and (ii) there exists t′ in ΔFD such that t′.A = t.A for every A in X.
Then it is possible to consider all queries of the form σS(π↓

X(ΔFD)) where S is
a selection condition involving only attributes in X. If q is such a query, then
we denote by ans(q) the set of all tuples in π↓

X(ΔFD) that satisfy S.

Towards Mining Frequent Queries in Star Schemes 109

In this paper, we consider only queries whose selection condition is a conjunc-
tion of elementary selection conditions of the form A = a where A is an attribute
in X and a a constant in dom(A). We refer to [13, 17] for more details on the
construction of ΔFD.

3.2 Star Schemes

An N -dimensional star scheme consists of a distinguished table ϕ with scheme
F , called the fact table, and N other tables δ1, . . . , δN with schemes D1, . . . , DN ,
called the dimension tables, such that:

1. If K1, . . . , KN are the (primary) keys of δ1, . . . , δN , respectively, then K =
K1 ∪ . . . ∪KN is the key of ϕ;

2. For every i = 1, . . . , N , πKi
(ϕ) ⊆ πKi

(δi) (Note that each Ki is a foreign
key in the fact table ϕ).

The attribute set M = sch(ϕ) \K is called the measure of the star scheme.

Example 3. The scheme of the database (Δ,FD) in our running example is a 2-
dimensional star scheme {δ1, δ2, ϕ} where the two dimension tables are δ1 = Cust
and δ2 = Prod, the fact table is ϕ = Sales and the measure is {Qty}. Moreover:

– Cid is the key of δ1, Pid is the key of δ2, and {Cid, P id} is the key of ϕ,
– πCid(ϕ) ⊆ πCid(δ1) and πPid(ϕ) ⊆ πPid(δ2). �

In order to consider the weak instance of an N -dimensional star scheme Δ, we
associate Δ with a set of functional dependencies FD defined as follows:

– for every i = 1, . . . , N and every attribute A in Di \Ki, Ki → A ∈ FD,
– K1 . . . KN →M ∈ FD.

If (Δ,FD) is a database over an N -dimensional star scheme, we “simplify” its
weak instance ΔFD by removing from it all tuples t′ for which there exists t in
ΔFD such that t′.A = t.A for every attribute A over which t′ is not null. We
feel justified in performing this simplification because doing so does not change
the answers to queries. From now on, the symbol ΔFD will denote the simplified
table. The following proposition gives a characterization of the tuples in the
simplified table.

Proposition 1. Let (Δ,FD) be a database over an N -dimensional star scheme.
The (simplified) weak instance ΔFD of (Δ,FD) contains two kinds of tuples:

– either total tuples, i.e., tuples containing no null value, and there is a one-
to-one mapping between these tuples and the tuples of the fact table,

– or tuples t containing constants over the attributes of a single dimension,
say i, such that the key value t.Ki does not occur in the fact table.

Proof. At the initialization step, the table under construction contains either
rows having no null values only over attributes in F (those tuples come from the

110 T.-Y. Jen et al.

fact table ϕ), or rows having no null values only over attributes in Di, for some
i in {1, . . . , N} (those tuples come from the dimension table Di).

Due to the fact that each Ki is a foreign key in ϕ, during the iteration step
every row r having no null values over attributes in F is combined with exactly
one row ri having no null values over attributes in Di, for every i in {1, . . . , N}.
This produces a row having no null value, and the rows r1, . . . , rN are removed
according to the simplification assumption.

Therefore, in ΔFD, the rows having no null value come from exactly one tuple
in ϕ, and for every i = 1, . . . , N , all tuples in Di whose key value does not appear
in ϕ are unchanged by the chase procedure; and this completes the proof.

We denote by Δϕ
FD the set of all total tuples in ΔFD and by Δi

FD the set of
all tuples in ΔFD containing constants only over attributes of dimension i, for
i = 1, . . . , N .

In the remainder of this paper, we consider a fixed N -dimensional star scheme,
with fact table ϕ and dimension tables δ1, . . . , δN , and a fixed database Δ
over that scheme. Moreover, for the sake of simplification, we assume that
for every i = 1, . . . , N , the key of dimension i is reduced to a single attri-
bute Ki.

On the other hand, it is well-known that in practice, the cardinality of the
fact table is much higher than that of any dimension table. In order to take this
situation into account, we assume that for every i = 1, . . . , N , |δi| ≤ |ϕ|.
Example 4. Referring back to Example 1, the universe of attributes is U = {Cid,
Cname, Caddr, P id, P type, Qty} and the functional dependencies are FD =
{Cid→ Cname, Cid→ Caddr, P id → Ptype, CidP id→ Qty}.

Let us consider a database (Δ,FD) consisting of the following three relations:

Cust Cid Cname Caddr

c1 John Paris
c2 Mary Paris
c3 Jane Paris
c4 Anne Tours

Prod P id P type

p1 milk
p2 beer

Sales Cid P id Qty

c1 p1 10
c2 p2 5
c2 p1 1
c1 p2 10

The simplified weak instance ΔFD is the following (where null values are repre-
sented by the empty character):

ΔFD Cid P id Cname Caddr Ptype Qty

c3 Jane Paris
c4 Anne Tours
c1 p1 John Paris milk 10
c2 p2 Mary Paris beer 5
c2 p1 Mary Paris milk 1
c1 p2 John Paris beer 10

Note that in this example, Δϕ
FD consists of the last four tuples of ΔFD, Δ1

FD of
the first two tuples, and Δ2

FD is empty. �

Towards Mining Frequent Queries in Star Schemes 111

4 Frequent Queries

4.1 Queries

Definition 1. Let Δ be a database over an N -dimensional star scheme, and let
X be a relation scheme. Denoting by ⊥ and � the false and true conditions,
respectively, let Σ(X) be the following set of conjunctive selection conditions:

Σ(X) = {⊥,�} ∪ { (A1 = a1) ∧ . . . ∧ (Ak = ak) |
(∀i = 1, . . . , k)(Ai ∈ X and ai ∈ dom(Ai)) and
(∀i, j ∈ {1, . . . , k})(i �= j ⇒ Ai �= Aj)}.

Selection conditions of Σ(X) are called selection conditions over X. Moreover,
we denote by Q(X) the set of all queries of the form σS(π↓

X(ΔFD)) where S ∈
Σ(X), and by Q(Δ) the union of all sets Q(X) for all relation schemes X.

According to Definition 1, we have σ�(π↓
X(ΔFD)) = π↓

X(ΔFD). To simplify the
notations, we denote σS(π↓

X(ΔFD)) by σS(X) with the convention that when
S = �, π↓

X(ΔFD) is denoted by (X). We define frequent queries as in [9]:

Definition 2. Let Δ be a database over an N -dimensional star scheme. For
every query q in Q(Δ), the support of q in Δ, denoted by supΔ(q) (or by sup(q)
when Δ is understood), is the cardinality of the answer to q in Δ.

Given a support threshold min-sup, a query q is said to be frequent in Δ (or
simply frequent when Δ in understood) if supΔ(q) ≥ min-sup.

Referring back to Example 4, it is easy to see that sup(q′1) = 3, sup(q′2) = 2 and
sup(q′3) = sup(q′4) = 1. Thus, for a support threshold equal to 3, q′1 is frequent
whereas q′2, q′3 and q′4 are not.

As shown in [6], for every X, Q(X) has a lattice structure, which implies that
frequent queries of Q(X) can be computed using any level-wise algorithm such
as Apriori ([1]). However, the main difficulty in the present approach is that such
a computation should be processed for every relation scheme X.

We notice in this respect that for every relation scheme X and for every query
q in Q(X), we have sup((X)) ≥ sup(q). Therefore, if (X) is not frequent, then
no exploration of Q(X) is needed. Based on this observation, in the next section,
we focus on the computation of all frequent queries of the form (X).

4.2 Equivalent Relation Schemes

Our approach for the efficient computation of frequent queries is based on the
following remark: if X and Y are two schemes having the same key, then for every
selection condition S over X and Y we have |σS(X)| = |σS(Y)| (see Proposition
2 below). Moreover, as stated by the following lemma, in the case of a star
scheme, every relation scheme X has only one key.

Lemma 1. Let Δ be a database over an N -dimensional star scheme. For every
relation scheme X, let key(X) be defined as follows:

112 T.-Y. Jen et al.

– if for every i = 1, . . . , N , Ki ∈ X then key(X) = K1 . . . KN

– else key(X) = X \{A ∈ X | (∃i ∈ {1, . . . , N})(KiA ⊆ Di∩X and A �= Ki)}.

Then (i) key(X) is a key of X, and (ii) key(X) is the only key of X.

Proof. Let X be a relation scheme. Clearly, the functional dependency key(X) →
X holds and thus, key(X) is a super key of X. In order to show that key(X) is
minimal, let A be an attribute in key(X) and let us show that the dependency
key(X) \A → A cannot be obtained from FD:

- This holds if A = Ki, because FD contains no functional dependency has Ki

in its right hand side.
- If A is a measure attribute in M , by definition of key(X), this implies that there
exists i0 in {1, . . . , N} such that Ki0 �∈ X. Since the only functional dependency
having A in its right hand side contains all Kis in its left hand side, Ki0 has
to be obtained using FD and the attributes in key(X) \ A. However, this not
possible because FD contains no dependency having Ki0 in its right hand side.
- Otherwise, A is an attribute in some Di different than Ki. In this case, by
definition of key(X), Ki �∈ X. Since the only functional dependency having A
in its right hand side contains Ki in its left hand side, it can be seen as above
that key(X) \A → A cannot be derived from FD.

Therefore, key(X) is a key of X. Now, let us assume that K is another key of X.
It can be shown as above that there cannot exist an attribute A in key(X)\K. Thus
key(X) ⊆ K, which implies that key(X) = K. Therefore, the proof is complete.

We define the following equivalence relation between relation schemes, based on
the functional dependencies in FD and their properties ([2, 17]).

Definition 3. Given two relation schemes X and Y , X is said to be less than
or equal to Y , denoted by X � Y , if X → Y can be derived from FD.

It is easy to see that the relation � as defined above is a pre-ordering. We can
extend this preordering to a partiel ordering over equivalence classes of schemes
as usual, i.e., by defining

X ≡ Y if and only if X � Y and Y � X.

We denote by [X] the equivalence class of X and by K the set of all equivalence
classes of schemes. We note that this partial ordering can also be defined using
closures: X � Y if Y + ⊆ X+, where X+ is the closure of X under FD, i.e., the
set of all attributes A such that X → A can be derived from FD ([2, 17]).

Example 5. Let us consider again the database (Δ,FD) and its weak instance
shown in Example 4. For X = {Cid, Caddr}, by Lemma 1, we have key(X) =
{Cid}, since Cid is the key of the table Cust and {Cid, Caddr} ⊆ {Cid, Cname,
Caddr}. Moreover, using the functional dependencies in FD, it easy to see that
X+ = {Cid, Cname, Caddr}.

Similarly, for Y = {Cid, Caddr, Qty}, we have key(Y) = {Cid, Qty} and
Y + = {Cid, Cname, Caddr, Qty}. Moreover, as X ⊆ Y , Y → X can be derived
from FD, and thus, [Y] � [X] holds. �

Towards Mining Frequent Queries in Star Schemes 113

In the following proposition, we state basic properties of equivalence classes.

Proposition 2. 1. For every relation scheme X, [X] = [key(X)] = [X+].
2. For all relation schemes X and Y such that [X] = [Y], if S is a selection
condition over X ∩ Y , then we have: sup(σS(X)) = sup(σS(Y)).

Proof
1. The result follows from the definition of the equivalence relation ≡ and from
the fact that X+ = (key(X))+.
2. For every X, we have |ans((X))| = |ans(key(X))|. Since [X] = [Y], X and Y
have the same keys. By Lemma 1, we obtain key(X) = key(Y). Hence, [X] = [Y]
implies that sup((X)) = sup((Y)), and thus, if S is a selection condition over
X ∩ Y , then sup(σS(X)) = sup(σS(Y)); which completes the proof.

Proposition 2(1) states that every class [X] has two distinguished representatives,
namely key(X) and X+. In fact for every relation scheme X, since key(X) is
the only key of X, it can be seen that [X] = {X ′ | key(X) ⊆ X ′ ⊆ X+}.

Moreover, Proposition 2(2) suggests that only one computation is necessary
to know the supports of frequent queries over all relation schemes from the same
class. The following corollary states this important property of our approach.

Corollary 1. Let X be a relation scheme and min-sup a support threshold. For
every selection condition S in Σ(X), σS(X) is frequent if and only if σS(X+)
is frequent.

Proof. Since X ⊆ X+, we have Σ(X) ⊆ Σ(X+). Thus, S is in Σ(X+), and the
corollary follows from Proposition 2(2) above.

In order to state a property of monotonicity of the support with respect to �,
we introduce the following two exclusive kinds of relation schemes:

1. Schemes X for which there exists i in {1, . . . , N} such that X ⊆ Di. These
schemes are called D-schemes.

2. Schemes X such that, for all i in {1, . . . , N}, X �⊆ Di. These schemes are
called F -schemes.

In our running example, if we consider X = {Cid, Caddr} and Y = {Cid,
Caddr, Qty}, then X is a D-scheme (because X ⊆ {Cid, Cname, Caddr}) and
Y is an F -scheme (because Y �⊆ {Cid, Cname, Caddr} and Y �⊆ {Pid, P type}).

The following lemma shows that all schemes in a given equivalence class mod-
ulo ≡ are of the same kind.

Lemma 2. For every relation scheme X, if X is a D-scheme (respectively an
F -scheme) then, every X ′ in [X] is a D-scheme (respectively an F -scheme).

Proof. We first note that, for every X and every X ′ in [X], we have X ′ ⊆ X+.
Moreover, let X be a D-scheme such that X ⊆ Di. Then X+ ⊆ Di, and thus
X ′ ⊆ Di. On the other hand, if X is an F -scheme, then assuming that X ′ is a
D-scheme such that [X] = [X ′] implies that X is also a D-scheme, which is a
contradiction. Thus, the proof is complete.

114 T.-Y. Jen et al.

Proposition 3. If X and Y are both D-schemes or both F -schemes and if S is
a selection condition over X ∩Y , then: [Y] � [X] ⇒ sup(σS(X)) ≤ sup(σS(Y)).

Proof. We first show that under the hypotheses of the proposition, if [Y] �
[X] then sup((X+)) ≤ sup((Y +)). To this end, let t be in ans((X+)). Then,
there exists a row r in ΔFD such that r.(X+) = t, and since t contains no
null values, such is the case for r.(X+). Moreover, as [Y] � [X], we have
X+ ⊆ Y +.

If X and Y are D-schemes, then there exist i and j in {1, . . . , N} such
that X+ ⊆ Di and Y + ⊆ Dj . As X+ ⊆ Y +, we have i = j. Therefore, by
Proposition 1, r.(Y +) contains no null values, and thus, we have that r.(Y +) ∈
ans((Y +)).

If X and Y are F -schemes, then by Proposition 1, r contains no null val-
ues, which implies that r.(Y +) contains no null values, and thus that r.(Y +) ∈
ans((Y +)).

In other words, we have just shown that |ans((X+))| ≤ |ans((Y +))|, thus that
sup((X+)) ≤ sup((Y +)). Moreover, based on Proposition 2, we have sup((X+)) =
sup((X)) and sup((Y +)) = sup((Y)), and the proof follows from the fact that the
selection operator with conjunctive selection conditions is monotonic.

The following example illustrates Proposition 3.

Example 6. Let us consider again the database (Δ,FD) and its weak instance
shown in Example 4. We recall that, for X = {Cid, Caddr} and Y = {Cid,
Caddr, Qty}, we have key(X) = {Cid}, X+ = {Cid, Cname, Caddr}, key(Y) =
{Cid, Qty} and Y + = {Cid, Cname, Caddr, Qty}.

Proposition 2 shows that sup((X)) = sup((X+)) = sup((Cid)) and that
sup((Y)) = sup((Y +)) = sup((CidQty)). However, although [Y] � [X], we
have sup((X)) > sup((Y)), because sup((X)) = 4 and sup((Y)) = 3. This
shows that Proposition 3 does not hold if, for instance, X is a D-scheme and Y
is an F -scheme.

On the other hand, denoting by S the selection condition Caddr = Paris ∧
Ptype = beer, recall that for a support threshold equal to 3, the query q′2 =
σS(Cid Caddr P type) is not frequent. Therefore, when computing the frequent
queries of Q(Y ′), where Y ′ = {Cname, Caddr, P type}, by Proposition 3, we
know, without any computation, that σS(Y ′) is not frequent, because Y + and
Y ′ are two F -schemes such that [Y +] � [Y ′]. �

Now, in order to show that the set K of equivalence classes has a lattice structure,
we define the following operations.

Definition 4. Let ⊗ and ⊕ be two binary operations over K defined for every
[X] and [Y] in K by: [X]⊗ [Y] = [X+ ∪ Y +] and [X]⊕ [Y] = [X+ ∩ Y +].

Proposition 2(1) implies that the operators given above are independent from
the repensentatives of the classes. In other words, if [X] = [X ′] and [Y] = [Y ′],
then [X]⊗ [Y] = [X ′]⊗ [Y ′] and [X]⊕ [Y] = [X ′]⊕ [Y ′].

Towards Mining Frequent Queries in Star Schemes 115

Moreover, it is easy to see that, for all [X1] and [X2] in K, we have:

1. [X1]⊗ [X2] � [Xi] and [Xi] � [X1]⊕ [X2], for i = 1, 2,
2. [X1]⊗ [X2] = max{[Y] ∈ K | [Y] � [X1] and [Y] � [X2]}, and

[X1]⊕ [X2] = min{[Y] ∈ K | [X1] � [Y] and [X2] � [Y]}.
As a consequence, 〈K,�〉 with the operators ⊗ and ⊕ is a lattice. Based on these
results, given a support threshold min-sup, all frequent queries can be computed
according to the following two steps:

1. Step 1: Computation of all frequent classes, i.e., all classes [X] such that, for
all X ∈ [X], sup((X)) ≥ min-sup. Minimal representatives of classes (i.e.,
key(X)) are used, in order to manipulate schemes as small as possible.

2. Step 2: Computation of all frequent queries. For each frequent class [X], all
frequent queries of the form σS(X+) are computed. Then, based on Corollary
1, for all X ′ in [X], the frequent queries of the form σS′(X ′) can be obtained
without any access to the data.

Regarding Step 1 above, based on Proposition 3 and our assumption |ϕ| ≥ |δi|
for every i = 1, . . . , N , it turns out that the support of (K1 . . . KN) is maximal
among the supports of all classes of K. We also note that the computation of
sup((K1 . . . KN)) requires no access to the database, since sup((K1 . . . KN)) =
|ϕ|, which is assumed to be known in advance.

Moreover, due to Lemma 1, starting from [K1 . . . KN], the lattice 〈K,�〉 is
built up level by level as follows:

– Level 1 consists of the single class [K1 . . . KN].
– At every level l, given a class [X], let us assume that X = Ki1 . . . Kip

X ′

where X ′ contains no key attributes. Then, all successors of [X] at level l+1
are obtained by applying one of the transformations below:
1. choose j in 1, . . . , p and replace Kij

in X by all non key attributes in
Dij

, or
2. remove from X an attribute A of X ′.

Moreover, if l = 1 then add the set M of measure attributes to every scheme
computed by the previous two steps.

Example 7. In our running example, level 1 of the lattice 〈K,�〉 contains the
class [{Cid, P id}], and as Qty is the only measure attribute, level 2 contains
[{Cname, Caddr, P id, Qty}] and [{Cid, P type, Qty}]. Then, the successors of
[{Cid, P type, Qty}] at level 3 are [{Cname, Caddr, P type, Qty}], [{Cid, Qty}]
and [{Cid, P type}]. �

5 Computation of Frequent Classes

5.1 Algorithms

In the following algorithm, C is meant to contain all candidate classes for a given
iteration step. As in Apriori, C is generated from the set L of frequent classes
computed during the previous iteration step. Moreover, the function prune per-
forms the pruning of candidates, based on Proposition 3.

116 T.-Y. Jen et al.

Algorithm 1
Input: The simplified weak instance ΔFD associated to a database Δ over an N -
dimensional star scheme {D1, . . . , DN , F}. The cardinalities |ϕ|, |δ1|, . . . , |δN | of all
tables in Δ. A support threshold min-sup.
Output: All frequent classes.
Method:
if |ϕ| < min-sup then //no computation because for every q ∈ Q(Δ), |ϕ| ≥ sup(q)

Freq = ∅
else //the computation starts with [K1 . . . KN] which is frequent

Freq = {[K1 . . . KN]}; L = {[K1 . . . KN]}; toDo = {1, . . . , N}
while L �= ∅ do

C = generate(L) ; prune(C, L, toDo)
L = L ∪ {[X] ∈ C | sup((X)) ≥ min-sup}
if L = ∅ then

L = {[Ki] | i ∈ toDo and |δi| ≥ min-sup}
toDo = ∅

end if
Freq = Freq ∪ L

end while

end if

return Freq

We note that the last if-statement in Algorithm 1 is due to the fact that even
if, due to prunings, some D-schemes have not been processed, this processing
has to be done. This is so because Proposition 3 implies that the supports of
D-schemes cannot be compared with those of F -schemes. This remark is also
taken into account in the algorithms generate and prune (see Figure 1).

We note that, in algorithm prune, we consider separately the cases of a D-
scheme and of an F -scheme as follows:

– If X is a D-scheme such that X ⊆ Di, then we know that either X = Ki

or X ⊆ Di \Ki. In the first case, [X] has to be processed because no other
scheme contained in Di has been encountered in the previous computations.
Since the cardinality of δi is assumed to be known, [X] is removed from C
and the sets L′ and ToDo are modified accordingly. If X ⊆ Di \ Ki, the
pruning is achieved as usual: if there is some A in Di different than Ki such
that [XA] is not in L, then we know that X and XA are two D-schemes
such that [XA] � [X] and (XA) is not frequent. Therefore, according to
Proposition 3, [X] is not frequent and thus, can be removed from C.

– If X is an F -scheme, in the first if-statement of this case, A is a non key
attribute not in X ′ and not in Di1 ∪ . . . ∪ Dip

. Then, by construction of
〈K,�〉, [X] has been generated from [XA]. Therefore, [XA] � [X], and as
[XA] is not in L, [X] is not frequent and so, can be removed from C.

In the second if-statement, we consider the case where X contains all
non key attributes of a dimension Di. Then, i �∈ {i1, . . . , ip} and thus, by
construction of 〈K,�〉, [X] has been generated from (X \Di)∪Ki. Therefore,
[(X \Di)∪Ki] � [X], and as [(X \Di)∪Ki] is not in L, [X] is not frequent
and so, can be removed from C.

Towards Mining Frequent Queries in Star Schemes 117

Algorithm generate

Input: A set L of frequent classes [X] at the same level l in 〈K,�〉.
Output: The set C of all candidate classes [X] obtained from L at level l+1 in 〈K,�〉.
Method:
if L = {[K1 . . . KN]} then

//for every i = 1, . . . , N replace Ki with all non-key attributes of Di and add M
C = {[(K1 . . . KN \ Ki) ∪ (DiM \ Ki)] | i = 1, . . . , N}

else
C = ∅
for each [X] ∈ L do

for each attribute A in X do
if A is the key attribute Ki then

//replace Ki in X with all non-key attributes of Di to get a candidate
C = C ∪ {[(X \ Ki) ∪ (Di \ Ki)] | Di �= Ki}

else //remove A from X to get a candidate
C = C ∪ {[X \ A] | X �= A}

end if
end for each

end for each
end if
return C

Algorithm prune

Input: A set L of frequent classes [X] at the same level l in 〈K,�〉, the set C of
candidate classes [X] for level l + 1 and the current value of toDo.
Output: The pruned set C, the initial value of the set L of frequent classes at level
l + 1 in 〈K,�〉, and the modified value of toDo.
Method:
L′ = ∅
for each [X] ∈ C do

if X is a D-scheme such that X ⊆ Di then
if X = Ki then

if |δi| ≥ min-sup then L′ = L′ ∪ {[Ki]} end if
toDo = toDo \ {i} ; C = C \ {[X]}

else //X �= Ki

if (∃A ∈ Di \ Ki)(A �∈ X and [XA] �∈ L) then C = C \ {[X]} end if
end if

else //X is an F -scheme
Assume X = Ki1 . . . KipX ′ where X ′ contains no Ki

if (∃A)(A �∈ X ′ and A ∈ Di \ Ki for i �= i1, . . . , ip and [XA] �∈ L) then
C = C \ {[X]}

end if
if (∃i)(Di \ Ki ⊆ X ′ and [(X \ Di) ∪ Ki] �∈ L) then C = C \ {[X]} end if

end if
end for each
L = L′ ;
return L, C and toDo

Fig. 1. Algorithms for Generating and Pruning Candidates

118 T.-Y. Jen et al.

5.2 Implementation of Algorithm 1

The main difficulty in implementing Algorithm 1 is counting the supports of
the candidates, because a tuple over a given scheme can appear in several rows
of ΔFD. Since we have to consider several classes at the same time (i.e., the
candidates at a given level in 〈K,�〉), it is not possible to sort ΔFD accordingly,
as done in [4, 6]. Note also that this remark shows that an FP-growth technique
([12]) can not be efficiently used in our appoach, since it would require that the
database be sorted for each candidate.

To cope with this problem, the table ΔFD is stored as a two-dimensional array
of booleans, denoted by B, as follows: each tuple t is stored as a vector of booleans,
whose length L is the total number of constants appearing in Δ. Assuming that
all these constants are ordered, the vector associated to t has value true at each
position corresponding to a constant occurring in t, and false at any other position.

Similarly, every relation scheme X is seen as a vector of booleans, denoted
by BX , the length of which is the cardinality of the universe U . To this end, we
order the attributes in such a way that all key attributes Ki are smaller than any
non-key attribute. Based on this ordering, the algorithms generate and prune
above can be implemented efficiently.

At each level of 〈K,�〉, the rows of B are scanned and for each of them, the
following actions are performed: Let ri = [b1, . . . , bM] be the ith row in B, then

– For every j = 1, . . . , L such that bj = true, consider the vector [B(1, j), . . . ,
B(i − 1, j)]. All these vectors build a two dimensional array, denoted by
Baux. Note that Baux can be stored in main memory, since it contains at
most |U | × (|B| − 1) booleans, where |B| is the number of rows in B.

– Baux is used for the computation of the support counts of the current can-
didates as follows: For each candidate [X], compute the boolean AND of all
columns of Baux corresponding to an attribute in X. Denoting by V the
resulting boolean vector, the support of (X) is computed as follows:
• If V contains at least one value true, then do not increment the support

count of (X) (because in this case, the subtuple over X of the current
tuple represented by ri has been counted previously).

• Otherwise increment the support count of (X) (because in this case, the
subtuple over X of the current tuple represented by ri has not been
counted previously).

5.3 Experimental Results

The algorithms given previously have been implemented in C, and our first ex-
periments have been processed on a Pentium 2.8 GHz PC with 496 MB main
memory running FreeBSD. The randomly generated data sets that we have con-
sidered are denoted by NDRRAAX where N is the number of dimensions, R is
the number of rows in the fact table, A is the total number of attributes in U
and X is the maximum number of descriptive attributes (attributes other than
the key) in the dimensions. We report below our results on the following data
sets, for which R has been set successively to 500, 1, 000, 1, 500 and 2, 000:

Towards Mining Frequent Queries in Star Schemes 119

– 4DRR25A06. In this case, we have 4 dimensions, with 7, 6, 6 and 5 attributes,
respectively, resulting in 25 attributes including the measure.

– 4DRR25A08. This case is the same as above except that we have 9, 8, 4 and
3 attributes in the dimensions.

– 6DRR25A04. In this case, we have 6 dimensions, with 5, 5, 4, 4, 3 and 3
attributes, respectively, resulting in 25 attributes including the measure.

– 6DRR25A07. This case is the same as above except that we have 8, 4, 4, 3, 3
and 2 attributes in the dimensions.

In our tests, the support threshold has been set to 70% of the number of rows
in the fact table. For every data set, the following tables show on the one hand
the number of frequent classes (F-classes), and on the other hand the total com-
putation time (T-time) and the time spent for counting (C-time), both given in
seconds. It turns out from our first experiments that the computation of frequent
classes is tractable, even though it can take up to 5.5 hours (see 4D2000R25A08).

Data set F-classes T-time C-time
4D0500R25A06 2,399,888 1,487 1,450
4D1000R25A06 2,375,011 4,884 4,847
4D1500R25A06 2,368,956 10,236 10,200
4D2000R25A06 2,368,429 17,574 17,535
4D0500R25A08 2,960,332 1,802 1,755
4D1000R25A08 2,824,546 5,632 5,585
4D1500R25A08 2,818,652 11,724 11,680
4D2000R25A08 2,818,202 20,002 19,955

Data set F-classes T-time C-time
6D0500R25A04 1,168,371 599 583
6D1000R25A04 1,164,123 1,884 1,867
6D1500R25A04 1,162,506 3,866 3,849
6D2000R25A04 1,162,060 6,560 6,542
6D0500R25A07 1,562,568 813 788
6D1000R25A07 1,546,520 2,468 2,444
6D1500R25A07 1,544,035 5,047 5,026
6D2000R25A07 1,543,850 8,545 8,522

It is important to note that we tried to compute frequent schemes for the data
set 4D0500R25A06 by running our algorithm on the power set of the universe
U , i.e., without considering equivalence classes. Considering one single level in
the corresponding lattice, the ratio of frequent schemes over frequent classes is
about 40 (27,105 frequent classes and 1,081,575 frequent schemes). This shows
that considering equivalence classes instead of single schemes is an important
issue in our approach and leads to significant computational savings. Moreover,
it can be seen from the tables above that most of the computation time is used
for counting the supports.

We are currently investigating optimizations for this computation. As a first is-
sue in this respect, we note that, in practice, repeated measure values in a fact table
are not common, meaning that the scheme (M) is in general frequent. This implies
that, in Algorithm 1, the lattice is explored down to its lowest level, which is costly.

On the other hand, for every class [X] such that M �⊆ X, M and XM are
F -schemes such that [XM] � [M]. Thus, if (M) is frequent then, based on
Proposition 3, (XM) is frequent. Hence, the computation of frequent classes
can be achieved as follows:

1. Compute the support of (M). Assuming that ΔFD is sorted according to
the values over M , this computation requires a single pass over ΔFD.

2. Compute frequent classes over π↓
D1...DN

(ΔFD).

120 T.-Y. Jen et al.

The tests we ran based on this policy have shown computation times about half of
those reported above. However, the price to pay for this important optimization
is that the supports of all frequent schemes of the form (XM) are unknown,
therefore, this issue must be investigated further.

6 Further Issues

In this section, we first consider the problem of mining all frequent queries, and
not only the frequent classes. Then, the problem of charactizing frequent queries
through a frequency threshold, instead of a support threshold is discussed.

6.1 Computation of Frequent Queries

Although our approach is only partially implemented, we argue that our work
leads to a tractable computation of all frequent queries. First, since we consider
star schemes only, it is easy to see that the table ΔFD can be computed in only
one step, without iterations. Moreover, as shown above, the computation of all
frequent classes can be effectively achieved.

On the other hand, it is likely that all frequent queries are not of interest for
each user. Instead, some users can be interested in some schemes while other
users would like to focuss on other schemes. Therefore, in such an environment,
every user should not have to compute all frequent queries. In order to take this
point into account, we propose the following policy:

– Algorithm 1 can be run against the database once for all users, as a pre-
processing phase. Storing all frequent queries of the form (X) with their
supports could then serve as a basis for queries issued by the different users.

– Assuming that all frequent queries computed so far are stored with their
supports, when users ask for frequent queries on different schemes (but rarely
all of them), additional prunings are possible. Note that this point is related
to the iterative computation of frequent patterns of [8].

The following example illustrates the second item just above.

Example 8. Referring to our running example, let us assume that all frequent
queries of the form (X) have been computed and stored, and that a first user
asks for all frequent queries of Q(X1) where X1 = {Cid, Caddr, Ptype, Qty}.
Let Q1 be this mining query.

In this case, we first notice that if key(X1) = {Cid, P type, Qty} is not stored
as a frequent class, then the answer to Q1 is empty. Let us now assume that
key(X1) is frequent.

Then, based on Corollary 1, we can consider X+
1 = {Cid, Cname, Caddr,

P type, Qty} instead of X1, and compute all frequent queries of the form σS(X+
1)

where S ∈ Σ(X+
1). If all these frequent queries are stored, then:

1. The answer to Q1 is computed without any further access to the database.
Indeed, the answer to Q1 is the set of all queries of the form σS(X1) such
that σS(X+

1) is frequent.

Towards Mining Frequent Queries in Star Schemes 121

2. For any other mining query Q′
1 asking for all frequent queries of the form

σS(X ′
1) where key(X1) ⊆ X ′

1 ⊆ X+
1 , the answer to Q′

1 can be obtained as
above, i.e., without any access to the database.

Assume now that after this computation, a user issues the mining query Q2
asking for all frequent queries of Q(X2) where X2 = {Cid, P type}. Since X1 �
X2, we also have X+

1 � X+
2 . Thus, based on Proposition 3, when computing

the frequent queries of the form σS(X+
2) where S ∈ Σ(X+

2), a candidate query
σS0(X

+
2) cannot be frequent if σS0(X

+
1) has not been found frequent in the

previous computation (because we know that sup(σS0(X
+
2)) ≤ sup(σS0(X

+
1))).

This point illustrates a case of additional pruning when iteratively computing
mining queries. �

6.2 Frequency Threshold vs. Support Threshold

In the present approach, we have defined frequent queries based on the cardi-
nality of the answers to the queries, i.e., we have defined frequent queries based
on a support threshold. However, one may argue that it might be interesting to
define the threshold as a ratio, i.e., as a frequency threshold.

Indeed, in the context of our running example, assume that we have 106

transactions in the fact table ϕ and 102 products in the dimension table Prod.
In this case, choosing a support threshold min-sup might be difficult for the
following reasons:

1. If min-sup ≥ 102, then no query involving only products can be frequent.
2. If min-sup ≤ 102, then too many queries involving transactions could be

frequent.

On the other hand, it is clear that this problem does not occur when considering
a frequency threshold min-freq of say 10%, meaning that a query involving only
products (respectively transactions) is frequent if its answer contains at least 10%
of the total number of pruducts (respectively of the total number of transactions).

More generally, let us consider that a query q = σS(X) is said to be frequent if
freq(q) = sup(σS(X))

sup((X)) is greater than or equal to a frequency threshold min-freq.
It turns out that, in this case, the property of monotonicity of the frequency with
respect to � does not hold, i.e., given two queries q = σS(X) and q′ = σS(Y),

X � Y ⇒ freq(q) ≥ freq(q′)

does not hold even if X and Y are either both F -schemes or both D-schemes.
This is so, because if X and Y are two F -schemes or two D-schemes such that

X � Y , by Proposition 3, we have sup(q) ≥ sup(q′) and sup((X)) ≥ sup((Y)),
and this does not imply that sup(q)

sup((X)) ≥
sup(q′)

sup((Y)) .

To cope with this problem, we recall that in Proposition 3, monotonicity holds
only when the two schemes involved in the comparison are either F -schemes or
D-schemes. Therefore, given a minimal frequency threshold min-freq, a query
q = σS(X) can be said to be frequent if:

122 T.-Y. Jen et al.

– sup(q)
|ϕ| ≥ min-freq, when X is an F -scheme, or

– sup(q)
|δi| ≥ min-freq, when X is a D-scheme included in the relation scheme of

the dimension table δi.

It can be shown that, with this definition of frequency, Algorithm 1 is still correct
if we replace the support threshold min-sup by min-freq×|ϕ| (respectively min-
freq×|δi|) in case of an F -scheme (respectively a D-scheme included in Di).

7 Conclusion and Further Work

In this paper, we have considered the weak instance model of relational databases,
in order to design level-wise algorithms for the computation of all frequent queries
in a database over an N -dimensional star scheme. We have shown that, in this case,
taking into account the functional dependencies has a crucial impact on the effi-
ciency of computing all frequent queries without selection conditions. We are cur-
rently implementing the computation of frequent queries with selection conditions.

On the other hand, it is clear that not every rule of the form q1 ⇒ q2 makes sense,
when q1 and q2 are arbitrary frequent queries. In particular,wemustmake sure that
the confidence of such rules is less than 1 and that q1 and q2 refer to the same “ob-
jects”. We are currently investigating the characterization of relevant rules using
the notion of query key. This notion is based on the usual notion (although it is a
different notion). Future research directions include the following:

1. Considering schemes more sophisticated than star schemes, such as snowflake
or constellation schemes. The work reported in [14] provides a suitable the-
oretical basis for this investigation.

2. Since our work is closely related to [6], we are investigating the relationships
between the two approaches.

3. Since data cubes and star schemes both deal with multi dimensional data, the
relationships between our work and that of [3] will be investigated further.

Acknowledgements. The authors wish to thank the anonymous referees for
their comments that helped improving significantly a previous version of the
paper.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A.I. Verkamo. Fast discovery
of association rules. In Advances in Knowledge Discovery and Data Mining, pages
309–328. AAAI-MIT Press, 1996.

2. W.W. Armstrong. Dependency structures of data base relationships. In IFIP
Congress, pages 580–583. North Holland, 1974.

3. A. Casali, R. Cichetti, and L. Lakhal. Extracting semantics from data cubes using
cube transversals and closures. In ACM KDD, pages 69–78, 2003.

4. L. Dehaspe and L. De Raedt. Mining association rules in multiple relations. In 7th
International Workshop on Inductive Logic Programming, volume 1297 of LNCS,
pages 125–132. Springer Verlag, 1997.

Towards Mining Frequent Queries in Star Schemes 123

5. C. T. Diop. Etude et mise en oeuvre des aspects itratifs de l’extraction de rgles
d’association dans une base de donnes. PhD thesis, Universit de Tours, France,
2003.

6. C. T. Diop, A. Giacometti, D. Laurent, and N. Spyratos. Composition of mining
contexts for efficient extraction of association rules. In EDBT’02, volume 2287 of
LNCS, pages 106–123. Springer Verlag, 2002.

7. A. Faye, A. Giacometti, D. Laurent, and N. Spyratos. Mining rules in databases
with multiple tables: Problems and perspectives. In 3rd International Conference
on Computing Anticipatory Systems (CASYS), 1999.

8. A. Giacometti, D. Laurent, C. T. Diop, and N. Spyratos. Mining from views : An
incremental approach. International Journal Information Theories & Applications,
9 (See also RR LI/E3i, Univ. de Tours), 2002.

9. B. Goethals. Mining queries, (unpublished paper). In Workshop on inductive
databases and constraint based mining. Available at http://www.informatik.uni-
freiburg.de/̃ ml/IDB/talks/Goethals slides.pdf., 2004.

10. B. Goethals and J. Van den Bussche. Relational association rules: getting warmer.
In D. Hand, R. Bolton, and N. Adams, editors, Proceedings of the ESF Exploratory
Workshop on Pattern Detection and Discovery in Data Mining, volume 2447 of
LNCS, pages 125–139. Springer-Verlag, 2002.

11. J. Han, Y. Fu, W. Wang, K. Koperski, and O. Zaiane. Dmql : A data mining query
language for relational databases. In SIGMOD-DMKD’96, pages 27–34, 1996.

12. J. Han, J. Pei, Y. Yin, and R. Mao. Mining frequent patterns without candi-
date generation: A frequent-pattern tree approach. Data Mining and Knowledge
Discovery, 8:53–87, 2004.

13. D. Laurent, V. P. Luong, and N. Spyratos. Querying weak instances under exten-
sion chase semantics. Intl Journal of Comp. Mathematics, 80(5):591–613, 2003.

14. M. Levene and G. Loizou. Why is the snowflake schema a good data warehouse
design? Information Systems, 28(3):225–240, 2003.

15. R. Meo, G. Psaila, and S. Ceri. An extension to sql for mining association rules.
Data Mining and Knowledge Discovery, 9:275–300, 1997.

16. T. Turmeaux, A. Salleb, C. Vrain, and D. Cassard. Learning caracteristic rules
relying on quantified paths. In PKDD, volume 2838 of LNCS, pages 471–482.
Springer Verlag, 2003.

17. J.D. Ullman. Principles of Databases and Knowledge-Base Systems, volume 1.
Computer Science Press, 1988.

Inductive Databases in the Relational Model:
The Data as the Bridge

Stefan Kramer, Volker Aufschild, Andreas Hapfelmeier, Alexander Jarasch,
Kristina Kessler, Stefan Reckow, Jörg Wicker, and Lothar Richter

Technische Universität München, Institut für Informatik,
Boltzmannstr 3, 85748 Garching bei München, Germany

kramer@in.tum.de

Abstract. We present a new and comprehensive approach to inductive
databases in the relational model. The main contribution is a new in-
ductive query language extending SQL, with the goal of supporting the
whole knowledge discovery process, from pre-processing via data mining
to post-processing. A prototype system supporting the query language
was developed in the SINDBAD (structured inductive database devel-
opment) project. Setting aside models and focusing on distance-based
and instance-based methods, closure can easily be achieved. An exam-
ple scenario from the area of gene expression data analysis demonstrates
the power and simplicity of the concept. We hope that this preliminary
work will help to bring the fundamental issues, such as the integration
of various pattern domains and data mining techniques, to the attention
of the inductive database community.

1 Introduction

Many of the recent proposals for inductive databases and constraint-based data
mining focus on single pattern domains (such as itemsets or molecular fragments)
or single tasks, such as pattern discovery or decision tree induction [15, 2, 6, 13, 7].
Although the closure property is fulfilled by many of those approaches, the pos-
sibilities of combining various techniques in multi-step and compositional data
mining are rather limited.

In this paper, we report the first results of a project that explores a different
avenue. The SINDBAD (structured inductive database development) project1

aims at the development of a prototype of an inductive database system that
supports the most basic preprocessing and data mining operations such that
they can be combined more or less arbitrarily. One explicit goal of the project
is to support the complete knowledge discovery process, from pre-processing to
post-processing. Since it is at the moment far from clear what the requirements
of a full-fledged inductive database will be, it is our belief that we can only find
out by building prototype systems.

The research described in this paper follows ideas worked out at the Dagstuhl
perspectives workshop “Data Mining: The Next Generation” [1], where a system
1 Structured in the sense of SQL – structured query language.

F. Bonchi and J.-F. Boulicaut (Eds.): KDID 2005, LNCS 3933, pp. 124–138, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Inductive Databases in the Relational Model 125

of types and signatures of data manipulation and mining operators was proposed
to support compositionality in the knowledge discovery process. At the work-
shop, the idea of using the data as the bridge between the various operators was
explicitly articulated. In this work, the main idea was to use the simplest possi-
ble signature (mapping tables onto tables) as a starting point for the exploration
of more complex scenarios.

The development of ideas was guided by a concrete use case, the analysis
of the NCI DTP human tumor cell line screening data. We started out with
concrete scenarios for multi-step, compositional data mining and then identified
the building blocks necessary for supporting them. SINDBAD was developed
over a period of nine months by a group of six students and recently finished the
first iteration of its develoment.

For the development of such a system, various paradigms could have been
adopted. In SINDBAD, we chose the relational model, as it possesses several de-
sirable properties. First, closure can easily be achieved. Second, it allows hand-
ling collections of tuples conveniently and in a declarative manner. Third, the
technology scales up well, and highly optimized implementations are available.
Fourth, systems supporting (variants of) SQL are well-known and established,
making it easier to get users acquainted with new querying facilities. Thus, we
took the same approach as Meo et al. [15] and devised an extension of SQL,
but for the most basic pre-processing and data mining techniques, discretiza-
tion, feature selection, pattern discovery, clustering and classification. Similar
approaches have been taken by Imielinski and Virmani [12] and Han et al. [10].
For a comprehensive discussion of these query languages and the current lack of
preprocessing (and postprocessing) primitives, we refer the reader to a survey
by Boulicaut and Masson [4].

This paper is organized as follows: After sketching the main ideas of the induc-
tive query language, we present the query operators in some detail. Subsequently,
we show how the query language can be used in a typical multi-step data mining
scenario. In the following section, details of the SINDBAD implementation, its
current limitations and possible extensions are presented. Finally, we touch upon
related work and discuss implementation alternatives.

2 Main Ideas of the Inductive Query Language

Adopting the relational model, queries are mappings from relations onto a rela-
tion. We designed an extension of SQL (a superset of SQL) to support different
kinds of preprocessing and data mining operations. Since every operator returns
a table, queries can be arbitrarily nested. If we would like to work with more
complex data, e.g., chemical compounds or substructures, we might handle ta-
bles of SMILES or SMARTS strings [5]. The mining operators were designed
in analogy to relational algebra and SQL: For instance, we made heavy use of
the extend-add-as operator and devised a feature-select clause in analogy to the
select clause.

126 S. Kramer et al.

To make this approach feasible, we took the design decision to set aside mod-
els for the moment and consider distances between objects as more elementary
and fundamental than models. That is, we support patterns and clusterings for
descriptive mining, but for predictive mining we focus exclusively on instance-
based learning. However, distances between instances and the nearest neighbors
of an instance can be handled conveniently in the query language (see below).

The results of mining operations applied to tables are again tables. For in-
stance, the discretization and feature selection operators return modified tables.
More importantly, the classification from a nearest-neighbor query can be added
to a table as a new attribute. Similarly, clustering results (cluster membership)
can simply be added to a table as a new attribute.

Since the goal of the project was to explore the power of compositionality
in data mining, we consciously chose the most basic building blocks and im-
plemented one fundamental technique per category. For discretization, we im-
plemented: equal-frequency/equal width, for feature selection: a filter approach
based on information gain or variance, for pattern discovery: APriori, for clus-
tering: k-Medoids and for classification: k-Nearest Neighbor. The goal is to sup-
port the whole knowledge discovery process, including pre-processing steps as
discretization and feature selection. However, it is not our ambition to reim-
plement every technique ourselves, but to make the system extensible by de-
sign. External tools can easily be integrated by declaring wrappers for exporting
and importing tables as plug-ins. Still, every analysis step can be performed
via queries from a command line interface. For instance, once a wrapper for
molecular data is written and declared as a plug-in, we might run an external
graph mining tool and import the results, e.g., a table of frequent or significant
molecular substructures, or a table of the occurrences of substructures in small
molecules.

A conceptual issue that still needs to be resolved concerns the notion of views.
At this point, it is not clear whether the new tables that are created as a results
of preprocessing or mining operations should be considered as (materialized)
views in the sense of databases. Conceptually, these derived tables should be
treated just as regular tables. However, they are often the product of exten-
sive computations. More sophisticated methods for implementing genuine data
mining views are conceivable in the future.

3 Inductive Query Language

Before sketching the main query operators, we briefly present the preliminaries
and assumptions of the approach.

3.1 Preliminaries

For every relation, we assume that an attribute heading as well as non-deletable
and non-mutable tuple identifiers are given. Since in many of the envisaged
applications rows and columns should interchangeable, we included an operator
for transposing a table. Table transposition is only possible if all attributes are

Inductive Databases in the Relational Model 127

Table 1. Main parameters to be set in configure clause

<configure-clause> ::= configure <group-expression-value>;

<group-expression-value> ::= knn k=<integer> |
kmed k=<integer> |
apriori minSupport=<float> |
discretization <disc-method-value>

<disc-method-value> ::= numofintervals=<integer> |
method=(frequency|width|manual) |
classColumn=<string>

Table 2. The extend clause as adapted for clustering, sampling and k-Nearest Neighbor
prediction. The last two clauses are variants of k-medoids and k-NN that might be
useful in practice: The k-medoid clause returns a relation with the medoids only. The
k-NN clause retrieves the closest instances from a relation for a given instance.

<extend-clause> ::=
extend <relation> add

(
kmedoid membership as <att> |
kmedoid centers as <att> |
knn prediction of <att> from <relation> as <att> |
sample membership as <att> |
distances from <relation> [as <prefix-att>] |
covered by <relation> [as <prefix-att>] |
external <external-program> [<relation>]

[as <prefix-att>]
)

<kmedoid-clause> ::= kmedoid relation <relation>

<knn-clause> ::= <singleton-relation> knns from <relation>

of the same type. If a table is transposed, the tuple identifiers become attributes,
and vice versa. If tables are joined, the new tuple identifiers are concatenations
of the tuple identifiers of the tuples from the joined tables.

Most of the query operators below can be parameterized. Parameters can be
either passed directly, or set in a so-called configure clause (see Table 1). For the
sake of simplicity, we did not include the parameters in the following definitions
in Backus-Naur Form (BNF), and assume the parameters are set in a configure
clause.

3.2 extend add as

We adopted the extend operator to add the results of the various data mining
operations as new attributes to a relation. The extend operator, one of the sim-

128 S. Kramer et al.

plest extensions of the original relational algebra proposal, adds computational
capabilities to the algebra [5]. It computes a function for each tuple and adds
the result as the value of a new attribute. The most general form of an extend
clause is given as follows:

<extend-clause> ::= extend <relation> add <function> as <att>

As an example, consider we want to add a new attribute gmwt to a table p,
defined as the attribute weight multiplied by 454 [5]:

extend p add (weight*454) as gmwt

In SQL, extending a table by computed attributes can easily be achieved by
the first part of a select statement (SELECT AS). All the data mining op-
erations would then be treated in the same way as aggregate functions (e.g.,
SELECT . . . ,KMEDOIDS(∗) AS . . . FROM . . .). Somewhat related, but
conceptually different, is the ALTER TABLE operator in today’s SQL systems
that changes the structure of existing tables (ALTER TABLE . . . ADD . . .).

In SINDBAD, the extend operator is modified in several ways and used di-
rectly in the query language. The complete syntax of the new operators in BNF
is shown in Table 2. Additionally, schema definitions of input and output rela-
tions are presented in Table 3 and Table 4. Tables 3 and 4 also highlight the
requirements of the operators on schema compatibility. The operators support
a variety of pre-processing and data mining operations.

Now we are going to explain some of the extension functions in more detail.
kmedoid provides distance-based clustering, which can come in two flavors. If
combined with membership, the new attribute values are the identifiers (integers
greater than or equal to one) of the clusters the respective example falls into,
whereas in combination with centers the value of the attribute indicates whether
it is a medoid or not (one for centers, zero otherwise). Another, less space-
intensive way is to use the k-medoid clause from Table 2, only returning a table
of medoids. Even simpler, one could only return a table with the keys of the
medoids. Another possibility (not implemented yet) is to return both cluster
membership and centers to facilitate the easy reconstruction of clusters.2

A simple prediction method is included by knn prediction of. The class iden-
tified by the first attribute in the clause is predicted on the basis of training
examples (the relation specified after the from keyword), and the resulting pre-
diction is stored in the new attribute specified following as.

Particularly useful for testing purposes is the sample membership operation,
which allows the user to split the set of examples into test and training set,
simply indicated by zero or one values of the added attribute. Cross-validation
is currently not supported, but will be integrated into one of the next versions
of SINDBAD.
2 Note that the user perspective need not conincide with the implementation per-

spective. We might use a very compact representation of clusters internally and
present them to the user in a seemingly space-intensive way. Further, the main idea
of SINDBAD is to transform data successively, and not to create too many extra
tables containing results in various forms.

Inductive Databases in the Relational Model 129

Table 3. Schema definition of input and output relations for the extend-add-as clause:
k-Medoids, k-NN and sampling. m denotes the number of attributes in the relation
(except for the identifier). Without loss of generality, we assume some order over the
attributes.

Operator:
extend REL add kmedoid membership as CLUSTER
Schema of input relation(s):
REL(ID, X1, . . . , Xm)
Schema of output relation:
NEWREL(ID, X1, . . . , Xm, CLUSTER)
Operator:
extend REL add kmedoid centers as CENTER
Schema of input relation(s):
REL(ID, X1, . . . , Xm)
Schema of output relation:
NEWREL(ID, X1, . . . , Xm, CENTER)
Operator:
extend TESTREL add knn prediction of Y from TRAINREL as Z
Schema of input relation(s):
TESTREL(ID, X1, . . . , Xm, Y)
TRAINREL(ID, X1, . . . , Xm, Y)
Schema of output relation:
NEWREL(ID, X1, . . . , Xm, Y, Z)
Operator:
extend REL add sample membership as SAMPLE
Schema of input relation(s):
REL(ID, X1, . . . , Xm)
Schema of output relation:
NEWREL(ID, X1, . . . , Xm, SAMPLE)

If distances to certain examples (one to many) are desired, they can be easily
created by the distances from operation, which adds the distances from the
examples in the given relation as new attributes, either with attribute names
generated from the examples’ identifiers or with a specified name prefix.

To use the frequent itemsets generated by the APriori algorithm (see below),
the covered by operation was included, that maps the occurrence of itemsets
back to the examples.

The genuine extensibility of the system comes into play with the external key-
word. This is not merely an operator transforming the data, but rather indicates
an external plug-in to the system, whose results are used as input for the new
attribute’s values.

3.3 feature select

InTable 5, several variants of feature selection are offered,which is an indispensable
step in the knowledge discovery process. The schema definition of all input/output
tables for feature selection and all remaining operators canbe found inTable 6. Fea-

130 S. Kramer et al.

Table 4. Schema definition of input and output relations for the extend-add-as clause:
addition of distances and pattern coverage. n2 denotes the number of rows of the second
input table.

Operator:
extend REL1 add distances from REL2

Schema of input relation(s):
REL1(ID, X1, . . . , Xm)
REL2(ID, X1, . . . , Xm)
Schema of output relation:
NEWREL(ID, X1, . . . , Xm, ID1, . . . , IDn2)
Operator:
extend REL1 add distances from REL2 as Y
Schema of input relation(s):
REL1(ID, X1, . . . , Xm)
REL2(ID, X1, . . . , Xm)
Schema of output relation:
NEWREL(X1, . . . , Xm, Y1, . . . , Yn2)
Operator:
extend DATAREL add covered by PATTERNREL
Schema of input relation(s):
DATAREL(ID, X1, . . . , Xm), X1, . . . , Xm being Boolean attributes
PATTERNREL(ID, X1, . . . , Xm), X1, . . . , Xm being Boolean attributes
Schema of output relation:
NEWREL(ID, X1, . . . , Xm, ID1, . . . , IDn2)
Operator:
extend DATAREL add covered by PATTERNREL as Y
Schema of input relation(s):
DATAREL(ID, X1, . . . , Xm), X1, . . . , Xm being Boolean attributes
PATTERNREL(ID, X1, . . . , Xm), X1, . . . , Xm being Boolean attributes
Schema of output relation:
NEWREL(ID, X1, . . . , Xm, Y1, . . . , Yn2)

Table 5. The feature select clause, reminiscent of the select clause in SQL

<feature-select-clause> :: =
feature select <conditions-on-tuples>
from <relation>
where <fs-condition>

<fs-condition> ::= ((variance | infogain <att>)
((<|>|=|<=|>=) <real> |
in top <integer>) |
<attribute-condition-expression>)

ture selection can be done according to various criteria. These criteria are speci-
fied in the <fs-condition>. Feature selection can be done either by applying hard
thresholds for variance or information gain, or by relative thresholds (in top).Alter-

Inductive Databases in the Relational Model 131

Table 6. Schema definition of input and output relations for all remaining operators.
n denotes the number of rows of the input table.

Operator:
feature select ∗ from REL where infogain Y in top P
Schema of input relation(s):
REL(ID, X1, . . . , Xm, Y)
Schema of output relation:
NEWREL(ID, Xs1 , . . . , Xsp , Y), where {Xs1 , . . . , Xsp} ⊆ {X1, . . . , Xm}
Operator:
discretize Xs1 , . . . , Xsp in REL
Schema of input relation(s):
REL(ID, X1, . . . , Xm), where {Xs1 , . . . , Xsp} ⊆ {X1, . . . , Xm}

a subset of REL’s numeric attributes
Schema of output relation:
NEWREL(ID, X1, . . . , Xm), with selected numeric attributes

{Xs1 , . . . , Xsp} ⊆ {X1, . . . , Xm} discretized
Operator:
frequent itemsets in REL
Schema of input relation(s):
REL(ID, X1, . . . , Xm), X1 to Xm being Boolean attributes
Schema of output relation:
NEWREL(ID, X1, . . . , Xm), NEWREL containing a Boolean representation

of frequent itemsets found
Operator:
transpose REL
Schema of input relation(s):
REL(ID, X1, . . . , Xm)
Schema of output relation:
NEWREL(X, ID1, . . . , IDn)
Operator:
project REL1 onto REL2 attributes
Schema of input relation(s):
REL1(ID, X1, . . . , Xm, . . . , Xp)
REL2(ID, X1, . . . , Xm)
Schema of output relation:
NEWREL(ID, X1, . . . , Xm)

natively, simple string matching over the attributes’ names can be applied, where
the keyword attribute is used to refer to attribute names (see below).

In a way, the feature-select clause resembles the select clause “rotated by
90 degrees”. However, in the feature-select clause, we can apply criteria for at-
tributes to be included, and need not specify explicit lists of attributes.1

1 In principle, it would be desirable to support arbitrary Boolean expressions (analo-
gously to the select clause [5], pp. 973-976), composed of syntactic criteria regarding
the attribute’s name as well as criteria regarding the attribute’s variance or infor-
mation gain.

132 S. Kramer et al.

3.4 Other Operators

We complete our list of pre-processing and data mining operators in Table 7.
Discretization may be applied either to all numerical attributes in the table, or
to a selected subset.

Table 7. Various other operators, for discretization, pattern discovery, table transpo-
sition and projection on another table’s attributes

<disc-clause> ::= discretize (* | <att-list>)
in <relation>

<pattern-disc-clause> ::= frequent itemsets
in <relation>

<transpose-clause> ::= transpose <relation>

<project-onto-clause> ::= project <relation>
onto <relation> attributes

Moreover, we can compute the frequent itemsets of a table. The resulting table
contains the same attributes as the input table. Much as in early proposals for
inductive databases, each row in the new table represents one frequent itemset
[3]. Finally, we can transpose tables, given that all the attributes are of the same
type. The last clause serves the purpose of restricting the set of attributes of one
relation to those of another. This is particularly useful for predictive mining,
where often the results of class-sensitive feature selection based on a training set
has to be transferred to a test set.

4 Worked Example

In the following section, we would like to give an example of the query language
at work. In Table 8, a worked example from the field of gene expression data
analysis is shown. The leukemia dataset of Golub et al. [8] is analyzed step by
step. The table shows the input and output of the system without displaying the
actual tables and views. In the output we also see the time it takes to answer
the queries.

First, the dataset is loaded, discretized and divided into a training and a
test set (queries 1 to 4). Note that the discretization and labeling as training
or test example is done in the second query. The following two queries simply
split the table into two tables based on the previously computed information.
Queries 5 and 6 perform class-sensitive feature selection. As a result, we reduce
the dataset to the fifty genes with maximal information gain with respect to the
tumor subtype to be predicted. Since the test set should have the same attributes
as the training set, we project the former onto the attributes of the latter in
query 6. Next, we query for frequent itemsets, that is, co-expressed genes. The
co-expressed genes are used to transform the data, because individual genes are

Inductive Databases in the Relational Model 133

Table 8. Example run on leukemia dataset of Golub et al.

Sindbad [1] > create view expression_profiles as
>import ../../../ALLAML.arff;

Time needed for query: 12.0 sec.
Sindbad [2] > create view train_test_expression_profiles as

>extend (discretize * in expression_profiles)
>add sample membership as train_flag;

Time needed for query: 38.0 sec.
Sindbad [3] > create view train_expression_profiles as

>select * from train_test_expression_profiles
>where train_flag = true;

Time needed for query: 59.0 sec.
Sindbad [4] > create view test_expression_profiles as

>select * from train_test_expression_profiles
>where train_flag = false;

Time needed for query: 1 min. 8.0 sec.
Sindbad [5] > create view reduced_train_expression_profiles as

>feature select * from train_expression_profiles
>where infogain tumor_subtype in top 50;

Time needed for query: 3.0 sec.
Sindbad [6] > create view reduced_test_expression_profiles as

>project test_expression_profiles
>onto reduced_train_expression_profiles attributes;

Time needed for query: 0.0 sec.
Sindbad [7] > create view coexpressed_genes as

>frequent itemsets in reduced_train_expression_profiles;
Time needed for query: 4.0 sec.
Sindbad [8] > create view classified_test_expression_profiles as

>extend
>(feature select * from
>(extend reduced_test_expression_profiles
>add covered by coexpressed_genes as ’fp1’)
>where attribute like ’fp%’ or attribute = ’tumor_subtype’)
>add knn prediction of tumor_subtype from
>(feature select * from
>(extend reduced_train_expression_profiles
>add covered by coexpressed_genes as ’fp2’)
>where attribute like ’fp%’ or attribute = ’tumor_subtype’)
>as predicted_tumor_subtype;

Time needed for query: 1.0 sec.
Sindbad > exit;
Have a nice day!

usually not very informative for predictive purposes. Query 8 is, by far, the
most complex expression listed here. In the query, the training and test data

134 S. Kramer et al.

are transformed in terms of the co-expressed genes. Subsequently, the original
features representing discretized expression levels of genes are removed (using
a feature select clause). The most important part is a knn clause, adding the
predictions based on instance-based learning to the test table as values for the
new attribute predicted tumor subtype. To simplify query 8, it could be split into
three parts:

create view train_set as
feature select *
from
(extend reduced_train_expression_profiles
add covered by coexpressed_genes
as ’fp’)

where attribute like ’fp%’ or attribute = ’tumor_subtype’;

create view test_set as
feature select *
from
(extend reduced_test_expression_profiles
add covered by coexpressed_genes
as ’fp’)

where attribute like ’fp%’ or attribute = ’tumor_subtype’;

create view classified_test_expression_profiles as
extend test_set
add knn prediction of tumor_subtype
from train_set
as predicted_tumor_subtype;

In subsequent steps, the error rate could be determined by comparing the
attributes tumor subtype and predicted tumor subtype.

5 Implementation, Current Limitations and Possible
Extensions

In this section, we present details of the implementation and some of the current
limitations and discuss possibilities for extending the system.

The SINDBAD prototype is implemented in Java. It should be noted that
the current implementation just serves the purpose of proving that the con-
cept is viable. For parsing the queries, we used the lexical analyzer generator
JFlex (see http://jflex.sourceforge.net/) and the parser generator Cup
(see http://www2.cs.tum.edu/projects/cup/). The implementation supports
arbitrarily nested queries. If an operator cannot be applied to an input table,
the system stops processing the query (gracefully) and outputs an error message.
However, the error message might be output relatively late in query processing,
if the error occurs in the outmost part of a nested query. At this point, the imple-
mentation is not very “declarative”. In the future, we are planning to integrate a
full-fledged analysis of parse trees, opening possibilities for query optimization.

Inductive Databases in the Relational Model 135

The software architecture of SINDBAD is already quite elaborate. The sys-
tem is built on top of postgreSQL (see http://www.postgresql.org/), an open
source relational database management system. The operations are mostly per-
formed on tables in memory, but the results can be made persistent at any time.
The architecture, in essence, would allow the data to be distributed over various
sites. In the implementation we could operate on proxy objects standing for col-
lections of data objects located anywhere in the world. However, no effort has
been made to optimize the performance of the system.

At this point, only a small fragment of SQL, namely that of select clauses, is
supported by SINDBAD. The processing of select clauses has been (naively) reim-
plemented in the system and is not delegated to the underlying relational database.
Intertwining arbitrary SQL expressions with inductive query operators seems to
be out of reach yet. Since reimplementation is obviously not desirable, other im-
plementation strategies may be followed in the development of future prototypes.

Currently, the system works in a single-relational setting, but it could easily
be extended towards multi-relational data mining. In fact, the core for multi-
relational data mining already exists in SINDBAD, as the select clause can
combine an arbitrary number of relations within an inductive query. Aggre-
gate functions [14] could be applied to preprocess the data for further analysis.
Another, more appealing approach would be to plug in distance measures for
relational data [11, 16].

One of the most important extensions of the system would be to include an
elaborate type system with a hierarchy of data types. The present implementa-
tion only knows the type of tables (tables in, table out). On a different level,
attributes may be of type Boolean, nominal and numeric. Given a type sys-
tem, operators with type signatures could be defined, paving the way for more
complex pre-processing, data mining and post-processing operations [1]. Type
signatures define the admissible inputs and outputs of data manipulation and
mining operations. Types and signatures would allow for the inclusion of mod-
els, which we completely set aside in the current approach. To overcome this
limitation, two basic types, that of tables and that of models, and signatures for
training, testing and handling collections of models would be required. An open
question is whether structures like linear separators or decision trees should be
mapped onto relations in some way.

A type system would also be the key to optimizations and extensibility. As
mentioned above, our goal was not to reimplement every technique from scratch,
but to design an extensible system with a uniform query language supporting
the whole knowledge discovery process.

6 Related Work, Discussion and Conclusion

We presented an extension of SQL for inductive databases in the tradition of
Imielinski and Virmani [12], Han et al. [10] and Meo et al. [15]. Our goal was to
provide rudimentary support for every data mining operation that is important
in practice: discretization, feature selection, frequent patterns, clustering and
classification.

136 S. Kramer et al.

A comprehensive SQL-based data mining approach is also taken in MS SQL
Server 2005 [17], which was launched in November 2005 after five years of de-
velopment. In the query language DMX, the user usually creates a so-called
“mining structure” first. The mining structure defines the data types of the at-
tributes, but not their usage (e.g., input or output). The usage of attributes is
specified in so-called “mining models”. The syntax of DMX is quite complex
and supports a lot of variants. In contrast, our approach was to focus on the
most essential operations, and explore more complex scenarios only in a second
step. Overall, the proposal made in this chapter is conceptually much simpler,
and therefore hopefully also more amenable to theoretical analysis (e.g., towards
an algebra, query optimizations and index structures). SINDBAD should also
be viewed as a research prototype to elucidate the requirements for full-fledged
inductive databases.

The focus of SQL Server 2005 is clearly on prediction. One of the central
concepts is that of a “prediction join” between a data table and a mining model,
that adds a prediction and related information. The prediction join seems to
perform a similar operation as some of our extend-add-as variants. In particular,
various “prediction functions” can be plugged in, interestingly including some
for clustering (see [17], p. 56). Therefore, different database concepts (join vs.
extend-add-as from a relational algebra extension) served as an inspiration for
the various data mining primitives.

Although scale and motivation are quite different and make a comparison
hard, there are a number of significant differences in the supported operations.
First, the concept of transforming the data on the basis of patterns is not found
in SQL Server 2005. Second, the concept of table transposition (motivated by
applications in gene expression data analysis) does not have a counterpart in the
commercial product. Third, feature selection is done implicitly in SQL Server
(see [17], p. 152) and beyond user control, whereas it is one of several data
transformation operators in SINDBAD. Fourth, it is possible to extract frequent
itemsets in SQL Server, however, it is unclear whether one can also query over
them (see [17], p. 242). Therefore, the closure property may not be fulfilled in all
cases. Fifth, discretization seems to be tied to the mining model, and is not seen
as a data transformation operation (see [17], p. 47). Sixth, multi-relational data
mining is mostly dealt with using nested tables and nested keys (see [17], p. 48
and p. 291). In contrast, SINDBAD seems naturally extensible towards a multi-
relational setting using recursive descent and set distance functions. Summing
up, the focus of SQL Server is on prediction, whereas the focus of SINDBAD is
on transforming the data successively.

In the early phases of the project we considered paradigms other than the
relational, such as object-orientation or XML, for building an inductive database
in the above style. As mentioned in the introduction, we had good reasons for
choosing the relational paradigm. Additionally, it has been shown that objects
and XML documents can be, to some extent, mapped onto the relational model
to support efficient query answering [5, 9]. The idea was that if objects and
XML documents can be mapped reasonably onto the relational model, perhaps

Inductive Databases in the Relational Model 137

it can be done successfully for inductive databases as well. It should be noted
that scalability was another major motivation for choosing the relational model.
However, if an elaborate system of types and signatures should be included, we
might have to switch to XML or object-oriented databases.

In summary, we presented a new and comprehensive approach to inductive
databases in the relational model. The main contribution of this paper is a
new inductive query language in the form of an SQL extension, including pre-
processing and data mining operators. We hope that this preliminary work will
help to bring fundamental issues in the field of inductive databases, such as
the integration of various patterns domains and data mining schemes, to the
attention of the research community.

Acknowledgements

We would like to thank the anonymous reviewers for their helpful comments.

References

1. R. Agrawal, T. Bollinger, C.W. Clifton, S. Dzeroski, J.-C. Freytag, J. Gehrke,
J. Hipp, D.A. Keim, S. Kramer, H.-P. Kriegel, B. Liu, H. Mannila, R. Meo, S.
Morishita, R.T. Ng, J. Pei, P. Raghavan, R. Ramakrishnan, M. Spiliopoulou, J.
Srivastava, V. Torra, A. Tuzhilin: Data Mining: The Next Generation. Report based
on a Dagstuhl perspectives workshop organized by R. Agrawal, J-C. Freytag, and
R. Ramakrishnan (see http://www.dagstuhl.de/04292/), 2005.

2. M. Botta, J-F. Boulicaut, C. Masson, R. Meo: Query languages supporting de-
scriptive rule mining: a comparative study. Database Support for Data Mining Ap-
plications – Discovering Knowledge with Inductive Queries, R. Meo, P.-L. Lanzi,
M. Klemettinen (Eds.), 27-56. Springer, Berlin, Germany 2004.

3. J.-F. Boulicaut, M. Klemettinen, H. Mannila: Modeling KDD processes within the
inductive database framework. Proc. of the 1st Int. Conf. on Data Warehousing and
Knowledge Discovery (DaWak 1999, Florence, Italy), 293-302. Springer, Berlin,
Germany 1999.

4. J.-F. Boulicaut, C. Masson: Data mining query languages. The Data Mining and
Knowledge Discovery Handbook, O. Maimon, L. Rokach (Eds.), 715-727. Springer,
Berlin, 2005.

5. C.J. Date: An introduction to database systems (8th edition). Pearson/Addison-
Wesley, Boston, USA 2004.

6. L. De Raedt, S. Kramer: The levelwise version space algorithm and its application
to molecular fragment finding. Proc. 17th Int. Joint Conf. on Art. Intell. (IJCAI
2001, Seattle, USA), 853-862. Morgan Kaufmann, San Francisco, CA, USA 2001.

7. M.N. Garofalakis, D. Hyun, R. Rastogi, K. Shim: Efficient algorithms for construct-
ing decision trees with constraints. Proc. 6th ACM SIGKDD Int. Conf. Knowledge
Discovery and Data Mining (KDD 2000, Boston, USA), 335-339. ACM Press, New
York, NY, USA 2000.

8. T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov,
H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri, C.D. Bloomfield, E.S. Lan-
der: Molecular classification of cancer: class discovery and class prediction by gene
expression monitoring. Science 286(15):531–537, 1999.

138 S. Kramer et al.

9. T. Grust, M. van Keulen, J. Teubner: Accelerating XPath evaluation in any
RDBMS. ACM Trans. Database Syst. 29:91-131, 2004.

10. J. Han, Y. Fu, K. Koperski, W. Wang, O. Zaiane: DMQL: A data mining query
language for relational databases. Proc. SIGMOD’96 Workshop. on Research Issues
on Data Mining and Knowledge Discovery (DMKD 1996, Montreal, Canada), 1996.

11. T. Horvath, S. Wrobel, U. Bohnebeck: Relational instance-based learning with lists
and terms. Machine Learning 43(1/2):53-80, 2001.

12. T. Imielinski, A. Virmani: MSQL: A query language for database mining. Data
Min. Knowl. Discov. 3(4):373-408, 1999.

13. S. Kramer, L. De Raedt, C. Helma: Molecular feature mining in HIV data. Proc.
7th ACM SIGKDD Int. Conf. on Knowledge Discovery and Data Mining (KDD
2001, San Francisco, USA), 136-143. ACM Press, New York, NY, USA 2001.

14. M.-A. Krogel, S. Wrobel: Transformation-based learning using multirelational ag-
gregation. Proc. 11th Int. Conf. on Inductive Logic Programming (ILP 2001, Stras-
bourg, France), Springer, Berlin, Germany, 2001.

15. R. Meo, G. Psaila, S. Ceri: An extension to SQL for mining association rules. Data
Min. Knowl. Discov. 2(2):195-224, 1998.

16. J. Ramon, M. Bruynooghe: A polynomial time computable metric between point
sets. Acta Informatica 37(10):765-780, 2001.

17. Z.H. Tang, J. MacLennan: Data mining with SQL Server 2005. Wiley, IN, USA
2005.

Transaction Databases, Frequent Itemsets,
and Their Condensed Representations

Taneli Mielikäinen

HIIT Basic Research Unit,
Department of Computer Science,

University of Helsinki, Finland

Abstract. Mining frequent itemsets is a fundamental task in data min-
ing. Unfortunately the number of frequent itemsets describing the data
is often too large to comprehend. This problem has been attacked by
condensed representations of frequent itemsets that are subcollections of
frequent itemsets containing only the frequent itemsets that cannot be
deduced from other frequent itemsets in the subcollection, using some
deduction rules. In this paper we review the most popular condensed
representations of frequent itemsets, study their relationship to transac-
tion databases and each other, examine their combinatorial and compu-
tational complexity, and describe their relationship to other important
concepts in combinatorial data analysis, such as Vapnik-Chervonenkis
dimension and hypergraph transversals.

1 Introduction

Mining frequent itemsets from transaction databases has been a very popular
research topic in data mining for more than a decade since its introduction [1].
The frequent itemsets themselves describe the co-occurrence of items and they
are also an intermediate step in the construction of association rules.

A major problem with frequent itemset mining is that the number of the
frequent itemsets is often large. This difficulty has been attacked by the use of
condensed representations of frequent itemsets that are typically subcollections
of frequent itemsets sufficient together with their frequencies and some simple
deduction rules to determine the whole collection of frequent itemsets and their
frequencies. The condensed representations of frequent itemsets have been rec-
ognized to be promising building blocks of inductive databases [2, 3, 4, 5].

Although most of the condensed representations of frequent itemsets do not
address data in any way (apart from the frequencies of the itemsets), their re-
lationship to the data is of highest importance, since the frequent itemsets are
aimed to be descriptive models for the data [6]. In this paper we study the
correspondence of condensed representations to transaction databases.

The paper is organized as follows. In Section 2 we define the central concepts
used in frequent itemset mining. In Section 3 we review the most popular con-
densed representations and study their properties. Section 4 compares the sizes
of the condensed representations on several concrete transaction databases. Sec-
tion 5 is a short conclusion.

F. Bonchi and J.-F. Boulicaut (Eds.): KDID 2005, LNCS 3933, pp. 139–164, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

140 T. Mielikäinen

2 Transaction Databases and Frequent Itemsets

Definition 1 (Items and itemsets). An itemset X is s finite subset of I, the
set of possible items.

Definition 2 (Transactions and transaction databases). A transaction t
is a pair 〈i,X〉 consisting of a transaction identifier tid(t) = i ∈ N and an itemset
is(t) = X ⊆ I. A transaction database D is a set of transactions with unique
transaction identifiers. The set SD of all itemsets in D is SD = {X : 〈i,X〉 ∈ D}.

Definition 3 (Occurrences, counts, covers, supports and frequencies).
The occurrence set of an itemset X in a transaction database D is the set of
transaction identifiers of the transactions with the itemset X, i.e.,

occ(X,D) = {i : 〈i, Y 〉 ∈ D, X = Y } .

The count of X in D is

count(X,D) = |occ(X,D)| .

The cover of an itemset X in a transaction database D is the set of transaction
identifiers of the transactions in D with the itemset containing X, i.e.,

cover(X,D) = {i : 〈i, Y 〉 ∈ D, X ⊆ Y } =
⋃

Y ⊇X

occ(Y,D).

The support of X in D is

supp(X,D) = |cover(X,D)| = |{i : 〈i, Y 〉 ∈ D, X ⊆ Y }|

and the frequency of X in D is

fr(X,D) =
supp(X,D)

|D| =
|{i : 〈i, Y 〉 ∈ D, X ⊆ Y }|

|D| .

The projection of a transaction database D onto an itemset X, i.e, the inter-
section of D and X is

D|X = {〈i,X ∩ Y 〉 : 〈i, Y 〉 ∈ D} .

A central task in data mining is to discover itemsets are contained in sufficiently
many transactions of the database:

Problem 1 (Frequent itemset mining). Given a transaction database D and a
real value σ ∈ [0, 1], find all σ-frequent itemsets, i.e., determine the collection

F(σ,D) = {X ⊆ I : fr(X,D) ≥ σ}

of σ-frequent itemsets in D.

Transaction Databases, Frequent Itemsets 141

The itemsets in D are the itemsets that have support at least one, i.e., the
itemsets in F(1/ |D| ,D). (Another option would be to consider each subset of I
as an itemset in D. Most of the results in this paper are invariant with respect
to this choice and also the results that are affected by the choice (Subsection 3.2
in particular) are quite the same for both interpretations of an itemset being in
the database.)

There are a couple of alternative views to frequent itemset mining:
1. A transaction database D can be viewed as a binary matrix such that
D[i, A] = 1 if and only if there is 〈i,X〉 ∈ D with A ∈ X, and the item-
sets as binary vectors. The binary vector X is σ-frequent in D if the scalar
product between X and at least σ |D| rows of the matrix D is |X|.

2. Items can be interpreted as boolean variables, D as a multiset of truth value
assignments t : I → {0, 1} and itemsets as monomials. Then the monomial
X is σ-frequent in D if at least σ |D| of the truth value assignments in D
satisfy it.

The total number of itemsets on I is often prohibitive. Hence the straight-
forward method to find the frequent itemsets, by computing the frequency for
each itemset in 2I = {X ⊆ I}, is not feasible in practice. The key to avoid the
combinatorial explosions is the anti-monotonicity of frequency:
Proposition 1. X ⊆ Y ⇒ fr(X,D) ≥ fr(Y,D)

Proof. Recall that

fr(X,D) =
supp(X,D)

|D| =
|cover(X,D)|

|D| .

By definition, cover(X,D) = {i : 〈i, Z〉 ∈ D, X ⊆ Z}. Hence, X ⊆ Y implies
cover(X,D) ⊇ cover(Y,D). Thus, X ⊆ Y ⇒ fr(X,D) ≥ fr(U,D). ��
The anti-monotonicity of frequency (Proposition 1) implies the fact that the
collection of frequent itemsets is downward closed:
Corollary 1. X ⊆ Y ∈ F(σ,D) ⇒ X ∈ F(σ,D)

Proof. The corollary follows immediately from Proposition 1 and the definition
of F(σ,D). ��
Due to Corollary 1, the potential frequent itemsets can be evaluated levelwise,
first computing the frequencies for all items occurring in the database, second the
frequencies of all 2-itemsets whose all items are frequent, and so on. Most of the
frequent itemset mining techniques (including the famous Apriori algorithm [7])
are variations of this idea. The levelwise approach for mining σ-frequent itemsets
in D can be implemented to run in time

O(|I|2 |D| |F(σ,D)|),
i.e., in time polynomial in the sum of the sizes of the input and the output.

Finding some σ-frequent itemset in a transaction database is easy, but count-
ing the number of frequent itemsets in the database is #P-hard [8]. Also, given
a transaction database D and a positive integer k, deciding whether or not there
is a σ-frequent itemset of cardinality k in D is NP-complete [8].

142 T. Mielikäinen

3 Condensed Representations

Although the current techniques for discovery of frequent itemsets are able to
mine gigabytes of frequent itemsets very quickly (see [9, 10]), such a large num-
ber of itemsets is very difficult to query or manipulate. There are many ways
how to approach this difficulty. For example, a simple approximation of fre-
quencies of the frequent itemsets can be obtained by taking a random sample
of the transactions [11, 12]. However, such a condensed representation is not a
subcollection of frequent itemsets. In this paper we focus on the most popular
condensed representations that are subcollections of frequent itemsets.

3.1 Condensed Representations Based on Borders

Perhaps the oldest condensed representations of frequent itemsets are the max-
imal frequent itemsets and the minimal infrequent itemsets [8, 13, 14]:

Definition 4 (Maximal frequent itemsets). An itemset X ∈ F(σ,D) is
maximal, if Y /∈ F(σ,D) for all Y � X. The collection of maximal σ-frequent
itemsets in D is denoted by MF(σ,D).

Definition 5 (Minimal infrequent itemsets). An itemset X /∈ F(σ,D) is
minimal, if Y ∈ F(σ,D) for all Y � X. The collection of minimal σ-infrequent
itemsets in D is denoted by MI(σ,D).

Maximal frequent and minimal infrequent itemsets are closely related to several
important concepts in combinatorics of set collections:

Definition 6 (Chains and antichains). A set collection S is a chain if and
only if for each X,Y ∈ S holds X ⊆ Y or X ⊇ Y .

A set collection S is an antichain if and only if for each X,Y ∈ S holds
X ⊆ Y or X ⊇ Y only if X = Y .

Proposition 2. The collections MF(σ,D) and MI(σ,D) are antichains.

Proof. Let X,Y ∈ MF(σ,D), X �= Y . Then X �⊆ Y , since X ∈ MF(σ,D)
implies that there is no Z ∈ F(σ,D) ⊇MF(σ,D) such that X � Z.

Similarly, X,Y ∈MI(σ,D), X �= Y , implies that X �⊆ Y . ��

It follows from the downward closedness of F(σ,D) (Corollary 1) that either of
MF(σ,D) and MI(σ,D) determine the collection F(σ,D). Furthermore:

Proposition 3. MF(σ,D) and MI(σ,D) are minimal collections that deter-
mine F(σ,D).

Proof. The collection MF(σ,D) determines F(σ,D), since

– by Corollary 1, for each X ∈ F(σ,D) there is Y ∈ MF(σ,D) such that
X ⊆ Y and

– by definition of MF(σ,D), if Z ⊆ Y ∈MF(σ,D) then Z ∈ F(σ,D).

Transaction Databases, Frequent Itemsets 143

The collection MF(σ,D) is minimal determining F(σ,D), since for any X ∈
MF(σ,D), there is no Y ∈MF(σ,D) \ {X} such that X ⊆ Y .

Similarly,MI(σ,D) determines F(σ,D) andMI(σ,D) is a minimal collection
determining F(σ,D). ��

The number of transactions in the database does not have very rigid correspon-
dence to the number of maximal frequent or minimal infrequent itemsets: There
are databases with |SD| = 2|I| different transactions but only one maximal fre-
quent itemset, and databases with the number of maximal frequent and minimal
infrequent itemsets exponential in |SD| = |I|+ 1:

Proposition 4. Let MI(σ,D) �= ∅. Then

1 ≤ |MF(σ,D)| , |MI(σ,D)| ≤
(

|I|
#|I| /2$

)
,

even when |I| = |SD| − 1 and σ ∈ [0, 1).

Proof. As F(σ,D) is always non-empty and for each X ∈ F(σ,D) there is Y ∈
MF(σ,D) such that X ⊆ Y , we have 1 ≤ |MF(σ,D)|.

The number of maximal frequent (or the number of minimal infrequent item-
sets) is at most

(
|I|

�|I|/2�
)

because MF(σ,D) and MI(σ,D) are antichains and

the largest antichain in 2I consists of all subsets of I of cardinality
(

|I|
�|I|/2�

)
=(

|I|
�|I|/2�

)
.

The collections with exactly
(

|I|
�|I|/2�

)
itemsets can be obtained by the

database D consisting of one transaction for each itemset I \ {A} , A ∈ I, and c
transactions with itemset Y , where Y = I if σ ≥ 1/2 and Y = ∅ otherwise. The
number c is a positive integer such that for each X ⊆ I such that |X| = #|I| /2$
holds fr(X,D) ≥ σ and fr(X ∪ {A} ,D) < σ,A ∈ I \X. ��

Neither of MF(σ,D) and MI(σ,D) is always the winner with respect to the
cardinality. Sometimes MF(σ,D) is smaller than MI(σ,D) and sometimes
MI(σ,D) is smaller than MF(σ,D).

Proposition 5 ([15]). Let MI(σ,D) �= ∅. Then

|MF(σ,D)| ≤ ((1− σ) |D|+ 1) |MI(σ,D)| .

In practice, the smaller of the collections can be chosen. Furthermore, it is possi-
ble to describe F(σ,D) by a subcollectionMF(σ,D)∪MI(σ,D) containing some
maximal frequent and some minimal infrequent itemsets [11]. (Furthermore, it
is possible to show that the smallest subcollection determining the collection of
frequent itemsets is necessarily a subset of MF(σ,D) ∪MI(σ,D).)

The maximal frequent and minimal infrequent itemsets are closely related to
minimal hypergraph transversals:

144 T. Mielikäinen

Definition 7 (Minimal hypergraph transversals). A hypergraph is a pair
〈I,S〉 where I is a set of elements and S is an antichain of subsets of I.

A transversal in a hypergraph 〈I,S〉 is a set X ⊆ I such that X ∩ Y �= ∅ for
each Y ∈ S. A hypergraph transversal is often called a hitting set.

A transversal X is minimal in a hypergraph 〈I,S〉 if none of the proper subsets
of X is a transversal in 〈I,S〉.

Namely, MI(σ,D) can be obtained from MF(σ,D) by minimal hypergraph
transversals [14] and vice versa:

Proposition 6. The collection MI(σ,D) consists of minimal hypergraph
transversals in 〈I, {I \X : X ∈MF(σ,D)}〉 and the collection MF(σ,D) con-
sists of complements minimal hitting sets in 〈I,MI(σ,D)〉.

Proof. Each frequent itemset is a subset of some maximal frequent itemset.
A hypergraph transversal Y ⊆ I in 〈I, {I \X : X ∈MF(σ,D)}〉 contains for
each X ∈ MF(σ,D) an item AX ∈ Y such that AX /∈ Y . Thus, such Y
is an infrequent itemset. If an itemset Z is not a hypergraph transversal in
〈I, {I \X : X ∈MF(σ,D)}〉, then it is contained in at least one maximal fre-
quent itemset and thus it is frequent. Hence, minimal hypergraph transversals
are minimal infrequent itemsets. Furthermore all minimal infrequent itemsets
are minimal transversals in 〈I, {I \X : X ∈MF(σ,D)}〉.

All supersets of minimal infrequent itemsets are infrequent. The comple-
ment of any proper superset of a complement of a minimal infrequent itemset
is frequent. Thus, the complements of the minimal hypergraph transversals of
〈I,MI(σ,D)〉 are maximal frequent itemsets. Furthermore, all maximal frequent
itemsets are complements of minimal hypergraph transversals in the hypergraph
〈I,MI(σ,D)〉. ��

Also the computational complexity of finding maximal frequent itemsets (or min-
imal infrequent itemsets) is closely related to minimal hypergraph transversals.
Namely, the incremental complexity of generating the collection MF(σ,D) ∪
MI(σ,D) is equivalent to generating minimal hypergraph transversals, which
implies that k itemsets from MF(σ,D) ∪MI(σ,D) can be generated in time
|I|O(1) |D|O(1) + ko(k) [15].

A maximal σ-frequent itemset in D can be found in time O(|I| |D|) by Algo-
rithm 1.

Given a transaction database D, counting the number of maximal frequent
itemsets in D is #P-hard [16] and deciding, for a given positive integer k,
whether there is a σ-frequent itemset of cardinality at least k in D is NP-
complete [8].

Furthermore, it is NP-complete to decide, given a transaction database D
and minimum frequency threshold σ and a collection S ⊆ MF(σ,D), whether
or not S �= MF(σ,D), even if |S| = O(|D|ε) and |MF(σ,D)| is exponentially
large in |D|, where ε > 0 can be arbitrary small [15]. Also finding a subcollection
of maximal frequent itemsets that approximate the frequent itemsets well is
NP-hard [17].

Transaction Databases, Frequent Itemsets 145

Algorithm 1. An algorithm for finding a maximal itemset in D
Input: A set I of items, a transaction database D over I and a minimum frequency

threshold σ ∈ (0, 1].
Output: A pair 〈X, fr(X,D)〉 consisting of a maximal σ-frequent itemset X in D and

its frequency fr(X,D).
1: function FindMaximal(I,D, σ)
2: X ← ∅; T ← {i : 〈i, X〉 ∈ D}
3: for all A ∈ I do
4: TA ← {i : 〈i, X〉 ∈ D, A ∈ X}
5: if |T ∩ TA| ≥ σ |D| then
6: X ← X ∪ {A}; T ← T ∩ TA

7: end if
8: end for
9: return 〈X, |T | / |D|〉

10: end function

Observe that σ-frequent itemsets in D correspond to the satisfying truth value
assignments for the boolean formula∨

X∈MF(σ,D)

∧
A∈I\X

¬A

that is in disjunctive normal form. The number of satisfying truth value as-
signments of a boolean formula in disjunctive normal form can be approximated
well [18]. Thus, the cardinality of F(σ,D) can be approximated fromMF(σ,D).
(See [17] for a direct construction.)

Sometimes the collection of frequent itemsets is not sufficient alone but also
the frequencies are needed. Even in that case some of the frequent itemsets can
be omitted. For example, based on the anti-monotonicity of frequency (Propo-
sition 1), the frequency of an itemset is at least as large as the largest fre-
quency of any of its supersets. Thus, the frequent itemsets with frequency equal
to the maximum frequency of its supersets can be considered as redundant.
Such irredundant frequent itemsets are called then the frequent closed item-
sets [19]:

Definition 8 (Closed frequent itemsets). An itemset X ∈ F(σ,D) is
closed, if fr(X,D) > fr(Y,D) for all Y � X. The collection of closed σ-frequent
itemsets in D is denoted by C(σ,D).

Note that a closed itemset X in D is a maximal σ-frequent itemset in D for
σ = [fr(X,D),min {fr(Y,D) : Y � X, fr(X,D) < fr(Y,D)}). The frequency of a
frequent itemset X ∈ F(σ,D) is obtained by taking the maximum of the fre-
quencies of the closed supersets of X, i.e.,

fr(X,D) = max {fr(Y,D) : X ⊆ Y ∈ C(σ,D)} .

In addition to the ease of frequency estimation, the closed itemsets have a
beautiful characterization as intersections of transactions [19, 20, 21]:

146 T. Mielikäinen

Proposition 7. An itemset X ⊆ I is closed in D if and only if X is its own
closure, i.e.,

X = cl(X,D) =
⋂

〈i,Z〉∈D,Z⊇X

Z.

Proof. If X �= cl(X,D), then there is Y = cl(X,D) such that X � Y and
fr(X,D) = fr(Y,D).

If X = cl(X,D) then for each Y ⊆ I, Y � X, there is 〈i, Z〉 ∈ D such that
X ⊆ Z but Y �⊆ Z and hence fr(X,D) > fr(Y,D). ��

Based on Proposition 7, it is possible to show the following relationship between
the closed and maximal σ-frequent itemsets and transaction databases:

Proposition 8. Let D′ be a transaction database consisting of (at least) one
transaction for the intersection of each %|σ |D||&-subset of transactions of D.
Then MF(σ,D) =MF(1/ |D′| ,D′) and C(σ,D) = C(1/ |D′| ,D′).

Proof. D′ contains a transaction for each itemset X ∈ C(σ,D) no other transac-
tions. Thus, MF(1/ |D′| ,D′) =MF(σ,D).

Because the intersection of closed itemsets is closed, we have C(1/ |D′| ,D′) =
C(σ,D). ��

The number of closed frequent itemsets is at least the number of maximal fre-
quent itemsets and at most the number of all frequent itemsets, whereas |C(σ,D)|
can be exponentially larger than |MF(σ,D)| and exponentially smaller than
|F(σ,D)|:
Proposition 9. 2−|I| |C(σ,D)| ≤ |MF(σ,D)| ≤ |C(σ,D)| ≤ 2I |MF(σ,D)|

2−|I| |Frσ,D| ≤ |C(σ,D)| ≤ |F(σ,D)| ≤ 2|I| |C(σ,D)|

Proof. Observe that there are 2|I| subsets of I. This gives the upper and the
lower bounds. We shall now show that the bounds are also tight.

Let D = {〈1, I〉}. Then |F(σ,D)| = 2|I| |C(σ,D)|.
Let D consists of one transaction for each I \ {A} , A ∈ I, and |I|σ/(1 − σ)

transactions with the itemset I. Then C(σ,D) = 2I whereas MF(σ,D) = {I}.
��

The computational complexity of mining closed frequent itemsets is understood
quite well. Some closed frequent itemset can be obviously found in polynomial
time in the size of the database by computing the intersection of any sufficiently
large subset of transactions. Furthermore, closed σ-frequent itemsets in a trans-
action database D can be found in polynomial time in |C(σ,D)|, |D| and |I| [22]
and all closed itemsets can be found in polynomial time with only one pass over
the database [20].

There are methods for approximating the frequencies of the frequent item-
sets by subcollections of closed frequent itemsets by expressing the frequencies
inaccurately [23, 24, 25, 26, 27, 28].

Given a transaction databaseD and a positive integer k, deciding whether there
is a closed σ-frequent itemset of cardinality at least k in D is NP-complete [8] and
counting the number of closed σ-frequent itemsets in D is #P-hard [16, 29].

Transaction Databases, Frequent Itemsets 147

Closed frequent itemsets X ∈ C(σ,D) partition frequent itemsets into equiv-
alence classes SX = {Y ∈ F(σ,D) : Y ⊆ X, cover(Y,D) = cover(X,D)}. The
itemset X ∈ C(σ,D) is the maximal itemset in the equivalence class SX and
contains all other itemsets in SX .

Instead of representing the frequencies of the itemsets using the maximal
itemsets in the equivalence classes, the frequencies can be represented using the
minimal itemsets in the classes. Such itemsets are called free itemsets [30] (or
key patterns [31] or generators [19]):

Definition 9 (Free frequent itemsets). An itemset X ∈ F(σ,D) is free, if
fr(X,D) < fr(Y,D) for all Y � X. The collection of free σ-frequent itemsets in
D is denoted by G(σ,D).

The free frequent itemsets have the advantage that any collection G(σ,D) is
downward closed:

Proposition 10. X ∈ G(σ,D), Y ⊆ X ⇒ Y ∈ G(σ,D)

Proof. Assume that there is Y /∈ G(σ,D) such that Y � X ∈ G(σ,D). However,
then there is Z � Y such that cover(Y,D) = cover(Z,D). Hence, supp(Y ∪
W,D) = supp(Z ∪ W,D) for any W ⊆ I \ Y , which means that no superset
Y ∪W of Y can be free, since there is always its proper subset Z ∪ (W \ Y)
such that supp(Y ∪W,D) = supp(Z ∪ (W \ Y),D). This contradicts with our
assumption. Thus the proposition holds. ��

This implies that virtually all frequent itemset mining algorithms can be adapted
to mine free frequent itemsets. Thus, similarly to all frequent itemsets, the free
frequent itemsets can be found in time polynomial in the sum of the sizes of the
input and the output.

The free frequent itemsets do not seem to have such a clean characteriza-
tion by the properties of the transaction databases as closed frequent itemsets
(Proposition 7) but still their relationship to transactions is relatively simple:

Proposition 11. An itemset X is free in D if and only if for each A ∈ X there
is 〈i, Z〉 ∈ D such that X ∩ Z = X \ {A}.

Proof. If for each A ∈ X there is 〈i, Z〉 ∈ D such that X ∩ Z = X \ {A}, then
supp(X,D) < supp(X \ {A} ,D) for each A ∈ X.

If there is such a A ∈ X that there is no 〈i, Z〉 such that X ∩ Z = X \ {A},
then supp(X,D) = supp(X \{A} ,D) for that A ∈ X, and thus X is not free. ��

A major drawback of free frequent itemsets is that they are not sufficient to
determine the collection of all frequent itemsets. Given only the free frequent
itemsets, it is not known which of the other itemsets are frequent and which
are not. Thus, in addition to free frequent itemsets, also minimal free infrequent
itemsets are needed:

Definition 10 (Minimal free infrequent itemsets). AnitemsetX /∈ F(σ,
D)isminimalfree,iffr(X,D) < fr(Y,D)Y ∈ G(σ,D)forallY � X.Thecollectionof
minimalfreeσ-infrequentitemsetsinD isdenotedbyGI(σ,D).

148 T. Mielikäinen

Apparently, the collection of minimal free infrequent itemsets coincides with the
collection of all minimal infrequent itemsets:

Proposition 12. GI(σ,D) =MI(σ,D)

Proof. By definition, GI(σ,D) ⊆ MI(σ,D). Thus, it suffices to show that
GI(σ,D) ⊇ MI(σ,D). To see that, let X ∈ MI(σ,D). Clearly fr(X,D) <
fr(X \ {A} ,D) for all A ∈ X. Thus X is free infrequent itemset. As all of the
subsets if X are frequent, X must also be minimal infrequent free itemset. ��

Note that finding both free frequent and minimal free infrequent itemsets does
not affect most of the mining algorithms since they usually discover also the
minimal (free) infrequent itemsets (to ensure that the collection of free frequent
itemsets is indeed complete).

It is easy to see that the number of free frequent itemsets is at least as large
as the number of closed frequent itemsets:

Proposition 13. |C(σ,D)| ≤ |G(σ,D)|

Proof. Each each itemset X ∈ G(σ,D) has a unique closure cl(X,D). Thus, for
each closed frequent itemset, there is at least one free frequent itemset. ��

3.2 Condensed Representations Based on Frequencies

Maximal, minimal, closed and free itemsets are based on bounding the frequen-
cies from above and below. However, also quantitative relationships between
the frequencies contain valuable information about the underlying database. For
example, not all syntactically valid collections of frequent itemsets have a trans-
action database with the corresponding frequencies [32, 33].

A natural next step is to strengthen the upper and the lower bounds, i.e.,
to decrease the uncertainty in the frequencies as much as possible [34]. One
approach to obtain bounds can be observed by rewriting the support of X in D
as follows. Let X be any superset of Y . Then

supp(Y,D) = |occ(Y,D|X)|+

∣∣∣∣∣∣
⋃

A∈X\Y

cover(Y ∪ {A} ,D)

∣∣∣∣∣∣
= |occ(Y,D|X)|+

∑
Y �Z⊆X

(−1)|Z\Y |+1 |cover(Z,DB)|

= count(Y,D|X) +
∑

Y �Z⊆X

(−1)|Z\Y |+1supp(Z,DB)

(the last equality being obtained using the inclusion exclusion principle [35]). By
noticing that count(X,D|Y) ≥ 0 and by reordering the terms of , we get

(−1)|X\Y |supp(X,D) ≥
∑

Y ⊆Z�X

(−1)|Z\Y |+1supp(Z,D).

Transaction Databases, Frequent Itemsets 149

That is, for all X ⊆ I and Y ⊆ X, we get an upper bound

supp(X,Y,D) =
∑

Y ⊆Z�X

(−1)|Z\Y |supp(Z,D) =
∑

Y ⊆Z�X

(−1)|X\Z|+1supp(Z,D)

for odd |X \ Y | and a lower bound

supp(X, Y,D) =
∑

Y ⊆Z�X

(−1)|Z\Y |+1supp(Z,D) =
∑

Y ⊆Z�X

(−1)|X\Z|+1supp(Z,D)

for even |X \ Y |. Thus, the frequency of X in D is bounded between

supp(X,D) = min
Y ⊂X

supp(X,Y,D) and

supp(X,D) = max
Y ⊂X

supp(X,Y,D).

These bounds are worst-case optimal for bounding the frequency of X by the
frequencies of its subsets [36] and they give rise of the non-derivable frequent
itemsets [37]:

Definition 11 (Non-derivable frequent itemsets). An itemset X ∈ F(σ,
D) is non-derivable, if supp(X,D) < supp(X,D). The collection of non-derivable
σ-frequent itemsets is denoted by N (σ,D).

Also non-derivable frequent itemsets have the advantage of forming a downward
closed collection [37] and they can be characterized by transactions:

Proposition 14. X ∈ N (σ,D), Y ⊆ X ⇒ Y ∈ N (σ,D)

Proof. If an itemset X is derivable inD, then supp(X,D)=supp(X,D), i.e., there
are itemsets Yl ⊂ X and Yu ⊂ X such that supp(X,Yl,D) = supp(X,Yu,D).
Hence, count(Yl,D) = 0 and count(Yu,D) = 0. Furthermore, we have supp(X ∪
{A} , Yu,D) = supp(X ∪{A} , Yl,D) for any X ∪{A} , A ∈ I \X, since if |X \ Z|
is odd (even), then |(X ∪ {A}) \ Z| is even (odd). ��
Proposition 15. An itemset X is non-derivable in D if and only if there are
no two itemsets Y,Z ⊆ X such that |Y | is odd, |Z| is even and Y,Z /∈ SD|X .

Proof. If Y = X or Z = X, then X in not in D. Thus, we can assume that Y
and Z are proper subsets of X.

If there are two proper subsets Y and Z of X such that Y,Z /∈ SD|X with |Y |
being odd and |Z| even, then one of |X \ Y | and |X \ Z| is odd and one is even.
Hence, supp(X,D) = supp(X,D).

If there is no proper subset Y of X such that Y /∈ SD|X and |X \ Y | is odd
(even), then supp(X,D) < supp(X,D) (supp(X,D) < supp(X,D)). ��
Evaluating the the upper and lower bounds completely can be quite time-
consuming. One simple approach to relieve the computational burden is to con-
sider the inclusion-exclusion formulas only up to certain depth:

suppk(X,D) = min
Y ⊂X,|X\Y |≤k

supp(X,Y,D) and

supp
k
(X,D) = max

Y ⊂X,|X\Y |≤k
supp(X,Y,D).

150 T. Mielikäinen

Itemsets irredundant with respect to such bounds are called k-free [38, 39]:

Definition 12 (k-free frequent itemsets). An itemset X ∈ F(σ,D) is k-free
if suppk(X,D) > supp(X,D) and supp

k
(X,D) < supp(X,D). The collection of

k-free σ-frequent itemsets in D is denoted by Gk(σ,D).

With k = 1, k-free frequent itemsets are the same as free frequent itemsets. Thus,
it is not surprising that, similarly to free itemsets, k-free frequent itemsets are
not sufficient to determine all frequent itemsets, but some additional itemsets
are needed:

Definition 13 (Minimal non-k-free frequent itemsets). An itemset X ⊆
I is minimal non-k-free, if X is not k-free, but all Y � X are k-free and
supp

k
(X,D) < suppk(X,D). The collection of minimal non-k-free σ-frequent

itemsets in D is denoted by GIk(σ,D).

This representation coincides with non-derivable frequent itemsets when k is
sufficiently large, for example k = |I|:

Proposition 16. N (σ,D) = G|I|(σ,D) ∪ GI |I|(σ,D).

Proof. If X ∈ N (σ,D), then X \ {A} ∈ G|I|(σ,D) for all A ∈ X. Hence, X ∈
G|I|(σ,D) or X ∈ GI |I|(σ,D).

If X /∈ N (σ,D), then supp|I|(X,D) = supp(X,D) = supp(X,D) = supp(X,

D) = supp|I|(X,D) and thus X /∈ G|I|(X,D) ∪ GI |I|(X,D). ��

Also k-free itemsets have a nice characterization by the transactions of the
database, generalizing the characterization of free itemsets [39]:

Proposition 17. An itemset X is k-free in D if if and only if Y ∈ SD|X for
all Y ⊆ X such that |X \ Y | ≤ k.

Proof. If X is k-free, then Y ∈ SD|X for all Y ⊆ X such that |X \ Y | ≤ k.
If X is not k-free, then there is Y ⊆ X such that Y /∈ SD|X and |X \ Y | ≤ k.

��
Proposition 17 implies that the cardinality of the largest k-free itemset is at
most l such that |SD| ≥

∑k
i=0

(
l
i

)
. For example, the largest |I|-free itemset is

of cardinality at most log |SD|.
The characterization reveals also that k-free itemsets are strongly connected

to some fundamental concepts of the combinatorics of set systems [35]:

Definition 14 (universality and density of transaction databases). Let
supp({A} ,D) > 0 for all A ∈ I. A transaction database D is k-dense if there is
a subset X ⊆ I of cardinality k such that |SD|X | = 2|X| = 2k. D is k-universal
if for all X ⊆ I of cardinality k holds |SD|X | = 2k.

Proposition 18. A transaction database D is k-dense if and only if there are
k-free itemsets of cardinality k in D. A transaction database D is k-universal if
and only if all itemsets X ⊆ I with |X| = k are k-free in D.

Transaction Databases, Frequent Itemsets 151

Proof. A transaction database D is k-dense if and only if there is X ⊆ I, |X| = k
such that Y ∈ SD|X for all Y ⊆ X. Thus, D is k-dense if and only if there is at
least one k-free itemset of cardinality k in D.

A transaction databases D is k-universal if and only if for all itemsets X ⊆
I, |X| = k, the collection SD|X consists of all subsets of X. That is, all itemsets
X ⊆ I of cardinality k are k-free in D. ��

The density of a transaction database is closely related to Vapnik-Chervonenkis di-
mension that is an important measure of the complexity of data in machine learn-
ing [40] and computational geometry [41] to name a few:

Definition 15 (VC-dimension). The Vapnik-Chervonenkis dimension of a
transaction database is equal to the largest k such that the database is k-dense.

Thus, the cardinality of the largest |I|-free itemset in D is closely related to the
VC-dimension of D:

Proposition 19. The cardinality of the largest |I|-free itemset in a transaction
database D is equal to the VC-dimension of D.

Proof. On one hand, the VC-dimension of D is at least as large as the cardinality
of the largest |I|-free itemset X in D, because SD|X = 2X .

On the other hand, the VC-dimension of D cannot be strictly larger than the
cardinality of the largest |I|-free itemset in D, since for any non-k-free itemset
X, there is Y � X such that Y /∈ SD|X . ��

This relationship sheds much light to k-free itemsets. For example, the upper
bounds for the cardinalities of k-free itemsets given in [39] are implied Sauer’s
Lemma (see [40]) using the VC-dimension of the database D (or equivalently
the cardinality of the largest |I|-free itemset in D).

In addition to providing combinatorial insights to the relationship between
k-free itemsets and transaction databases, the VC-dimension implies important
computational complexity results for mining k-free itemsets.

Namely, deciding whether the VC-dimension of the database is at least l is
LOGNP-complete problem [42]. (Class LOGNP contains the problems that can
be in polynomial time using log2 n nondeterministic bits [42]. Note that it is very
unlikely that the problem of computing the VC-dimension is NP-hard since the
problem can be solved in time proportional to nlog n.)

The problem is believed to be difficult to solve also for a constant l. More
specifically, deciding whether VC-dimension of a given binary matrix is at least
l for a constant l is known to be W[1]-complete [43, 44]. (A problem being W[1]-
complete means that the problem cannot be solved in time f(l)nO(1) for any
function f unless the parameterized complexity hierarchy collapses and thus a
large number of other problems that believed to be difficult to solve could be
solved efficiently [43].) Furthermore, it is possible to show the following hardness
results for non-derivable frequent itemsets:

Proposition 20. It is LOGNP-complete to decide, given a transaction data-
base D, a minimum frequency threshold σ ∈ [0, 1] and a positive integer l, whether

152 T. Mielikäinen

or not there is a non-derivable σ-frequent itemset of cardinality at least l in D.
Furthermore, the problem is W[1]-complete for constant l.

Proof (Sketch). The proof for this can be obtained by adapting the LOGNP-
completeness proof VC-dimension as given in [42]. The proof gives a construction
to encode an instance of an arbitrary problem in LOGNP as a binary matrix
C in such a way that the instance is a positive one if and only if the VC-
dimension of the matrix C is at least (and, in fact, exactly) (3 + p + q) log n.
Furthermore, the VC-dimension of C is (3 + p + q) log n if and only if C has
the row 1log n0(2+p+q) log n (where p and q are constants, and n is the size of the
input).

Let C ′ be a matrix consisting of rows r0 and r1 for each row r in C. Then VC-
dimension of C ′ is 1+(3+p+q) log n if and only if there is a non-derivable itemset
of cardinality 1 + (3 + p + q) log n in the transaction database corresponding
to C ′. ��

The complexities of counting the number of k-free frequent itemsets and counting
the number of k-free itemsets of certain cardinality are still unknown. The latter
of the problems is also of independent interest as a measure of the stability of
VC-dimension and thus having some relevance for many problems in learning
theory and algorithmics.

4 Experiments

As the worst-case bounds for the number of frequent itemsets and their con-
densed representations are quite loose and the generative models of real trans-
action data is still quite unclear (although some interesting progress have been
made recently, see [39, 45]), we computed frequent itemsets and their condensed

Table 1. The transaction databases used in the experiments. The columns are the
name of the database, the number of transactions, the number of items, the total
number of items in the database, and the density of the database.

D |D| |I| ||D|| ||D|| /(|D| |I|)
accidents 340183 468 11500870 0.0722390846897362
chess 3196 75 118252 0.493333333333333
connect 67557 129 2904951 0.333333333333333
kosarak 990002 41270 8019015 0.00019626844652002
mushroom 8124 119 186852 0.19327731092437
retail 88162 16470 908576 0.000625728920102058
BMS-WebView-1 59601 497 149638 0.00505163495528295
BMS-WebView-2 77511 3340 358277 0.00138391406218797
pumsb 49046 2113 3629404 0.0350212967345007
pumsb star 49046 2088 2475947 0.0241772697395814
T10I4D100K 100000 870 1010228 0.011611816091954
T40I10D100K 100000 942 3960507 0.0420435987261146

Transaction Databases, Frequent Itemsets 153

 1

 10

 100

 1000

 10000

 100000

 10 100

th
e

nu
m

be
r

of
 o

f t
he

 tr
an

sa
ct

io
ns

the cardinality of the transaction

accidents

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1 10 100 1000 10000

th
e

nu
m

be
r

of
 o

f t
he

 tr
an

sa
ct

io
ns

the cardinality of the transaction

kosarak

 1

 10

 100

 1000

 10000

 100000

 10 100

th
e

nu
m

be
r

of
 o

f t
he

 tr
an

sa
ct

io
ns

the cardinality of the transaction

pumsb_star

 1

 10

 100

 1000

 10000

 1 10 100

th
e

nu
m

be
r

of
 o

f t
he

 tr
an

sa
ct

io
ns

the cardinality of the transaction

retail

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

th
e

nu
m

be
r

of
 o

f t
he

 tr
an

sa
ct

io
ns

the cardinality of the transaction

BMS-WebView-1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000

th
e

nu
m

be
r

of
 o

f t
he

 tr
an

sa
ct

io
ns

the cardinality of the transaction

BMS-WebView-2

 1

 10

 100

 1000

 10000

 100000

 1 10 100

th
e

nu
m

be
r

of
 o

f t
he

 tr
an

sa
ct

io
ns

the cardinality of the transaction

T10I4D100K

 1

 10

 100

 1000

 10000

 1 10 100

th
e

nu
m

be
r

of
 o

f t
he

 tr
an

sa
ct

io
ns

the cardinality of the transaction

T40I10D100K

Fig. 1. The number of transactions of different cardinalities in the transaction
databases from left to right, top to bottom: accidents, kosarak, pumsb star, retail,
BMS-WebView-1, BMS-WebView-2, T10I4D100K and T40I10D100K

154 T. Mielikäinen

Fig. 2. The number of all, closed, free, maximal and non-derivable frequent itemsets
for several minimum support thresholds in the transaction databases accidents (top)
and chess (bottom)

Transaction Databases, Frequent Itemsets 155

Fig. 3. The number of all, closed, free, maximal and non-derivable frequent itemsets
for several minimum support thresholds in the transaction databases connect (top)
and kosarak (bottom)

156 T. Mielikäinen

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

th
e

nu
m

be
r

of
 fr

eq
ue

nt
 it

em
se

ts

the minimum support threshold

mushroom

the number of transactions
frequent itemsets

closed frequent itemsets
free frequent itemsets

maximal frequent itemsets

non-derivable frequent itemsets

 1

 10

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000 100000

th
e

nu
m

be
r

of
 fr

eq
ue

nt
 it

em
se

ts

the minimum support threshold

retail

the number of transactions
frequent itemsets

closed frequent itemsets
free frequent itemsets

maximal frequent itemsets
non-derivable frequent itemsets

Fig. 4. The number of all, closed, free, maximal and non-derivable frequent itemsets
for several minimum support thresholds in the transaction databases mushroom (top)
and retail (bottom)

Transaction Databases, Frequent Itemsets 157

 1

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000

th
e

nu
m

be
r

of
 fr

eq
ue

nt
 it

em
se

ts

the minimum support threshold

BMS-WebView-1

the number of transactions
frequent itemsets

closed frequent itemsets
free frequent itemsets

maximal frequent itemsets
non-derivable frequent itemsets

 1

 10

 100

 1000

 10000

 100000

 1e+06

 10 100 1000 10000 100000

th
e

nu
m

be
r

of
 fr

eq
ue

nt
 it

em
se

ts

the minimum support threshold

BMS-WebView-2

the number of transactions
frequent itemsets

closed frequent itemsets
free frequent itemsets

maximal frequent itemsets
non-derivable frequent itemsets

Fig. 5. The number of all, closed, free, maximal and non-derivable frequent itemsets
for several minimum support thresholds in the transaction databases BMS-WebView-1
(top) and BMS-WebView-2 (bottom)

158 T. Mielikäinen

Fig. 6. The number of all, closed, free, maximal and non-derivable frequent itemsets
for several minimum support thresholds in the transaction databases pumsb (top) and
pumsb star (bottom)

Transaction Databases, Frequent Itemsets 159

Fig. 7. The number of all, closed, free, maximal and non-derivable frequent itemsets
for several minimum support thresholds in the transaction databases T10I4D100K (top)
and T40I10D100K (bottom)

160 T. Mielikäinen

representations for a few transaction databases available at FIMI repository1.
The transaction databases used in the experiments are summarized in Table 1.
To get further insights to the transaction databases, the cardinality distribu-
tions of the transaction databases accidents, kosarak, pumsb star, retail,
BMS-WebView-1, BMS-WebView-2, T10I4D100K and T40I10D100K are shown in
Figure 1. The cardinality distributions of transaction databases chess, connect,
mushroom and pumsb are not shown, since all transaction in them are 37, 43, 23
and 74, respectively.

More specifically, we computed all, closed, free, maximal, and non-derivable
frequent itemsets for the transaction databases of Table 1. The results are shown
in Figures 2–7. Each figure also contains a line showing the number of transaction
of the corresponding transaction database. The number of transactions in the
database can be used as a baseline of whether the frequent itemset collection is
more concise representation. It is worth recalling that the frequent free itemsets
are not themselves sufficient representation but also the collection of minimal
infrequent itemsets (or the transaction database, for computing the closures of
the free itemsets) is needed.

The figures show that 1) the condensed representations provide sometimes
considerable reduction in the space consumption and 2) the non-derivable item-
sets provide compact representations, especially for small transaction databases.
Neither of these are very surprising and both in fact have quite similar possible
explanations. First, all condensed representations use the frequency structure of
the frequent itemset collection to detect redundant frequent itemsets. Second,
non-derivable itemsets use much stronger operations to detect the redundancy:
free and closed itemsets are determined only by the minimums and maximums
of frequencies in very small neighborhoods whereas non-derivable itemsets are
based on deducing quite complicated upper and lower bounds for the frequencies
and in addition to the fact that they can exploit much larger neighborhoods.

5 Conclusions and Future Work

There are many interesting connections between transaction databases, frequent
itemsets and their condensed representations. Many condensed representations
show relevance also at the level of data. The computational complexity of min-
ing frequent itemsets is quite well understood, but there are still important open
problems. In general, relating the complexity measures for data to the complex-
ity measures for patterns and pattern collections seems to have great potential
in increasing our understanding on pattern discovery, both conceptually and
algorithmically. Also studying the relationships between mining the condensed
representations of pattern collections and related problems, such as minimal
hypergraph transversals and the stability of VC-dimension, seem to be tasks
worth looking at. Especially, the fact that many related problems can be solved
in polynomial time using log2 n nondeterministic bits [42, 46] should be pondered
carefully. Finally, more emphasis should be put on identifying and analyzing the
1 http://fimi.cs.helsinki.fi

Transaction Databases, Frequent Itemsets 161

most important use cases of frequent itemsets (and interesting patterns in gen-
eral) and how the applications affect the way the frequent itemsets are actually
represented [11, 34, 47]. For example, the need for efficient frequency queries pose
very different requirements for the inductive database than representing frequent
itemsets to the user as a concise summary of the data.

Acknowledgments. I wish to thank Francesco Bonchi, Toon Calders, Floris
Geerts, Bart Goethals, Heikki Mannila, and Ari Rantanen for valuable discus-
sions and constructive comments. I am most thankful to the anonymous review-
ers for useful suggestions.

The experiments could not have been done without data. Therefore I wish
to thank Blue Martini Software for contributing the KDD Cup 2000 data [48]
as BMS-WebView-1 and BMS-WebView-2 were part of the KDD Cup 2000 data.
I wish to thank also Tom Brijs for providing the transaction database retail.
The FIMI data repository was also very valuable for the experiments. Thus, I
wish to thank Roberto Bayardo, Bart Goethals and Mohammed Zaki.

References

1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of
items in large databases. In Buneman, P., Jajodia, S., eds.: Proceedings of the 1993
ACM SIGMOD International Conference on Management of Data, Washington,
D.C., May 26-28, 1993. ACM Press (1993) 207–216

2. Boulicaut, J.F.: Inductive databases and multiple uses of frequent itemsets: The
cInQ approach. [49] 1–23

3. De Raedt, L.: A perspective on inductive databases. SIGKDD Explorations 4
(2003) 69–77

4. Imielinski, T., Mannila, H.: A database perspective on knowledge discovery. Com-
munications of The ACM 39 (1996) 58–64

5. Mannila, H.: Inductive databases and condensed representations for data mining.
In Maluszynski, J., ed.: Logic Programming, Proceedings of the 1997 International
Symposium, Port Jefferson, Long Island, N.Y., October 13-16, 1997. MIT Press
(1997) 21–30

6. Mannila, H., Toivonen, H.: Multiple uses of frequent sets and condensed represen-
tations. In Simoudis, E., Han, J., Fayyad, U.M., eds.: Proceedings of the Second
International Conference on Knowledge Discovery and Data Mining (KDD-96).
AAAI Press (1996) 189–194

7. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.I.: Fast discovery
of association rules. In Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., Uthu-
rusamy, R., eds.: Advances in Knowledge Discovery and Data Mining. AAAI/MIT
Press (1996) 307–328

8. Gunopulos, D., Khardon, R., Mannila, H., Saluja, S., Toivonen, H., Sharma, R.S.:
Discovering all most specific sentences. ACM Transactions on Database Systems
28 (2003) 140–174

9. Goethals, B., Zaki, M.J., eds.: Proceedings of the Workshop on Frequent Item-
set Mining Implementations (FIMI-03), Melbourne Florida, USA, November 19,
2003. Volume 90 of CEUR Workshop Proceedings. (2003) http://CEUR-WS.org/
Vol-90/.

162 T. Mielikäinen

10. Bayardo, R., Goethals, B., Zaki, M.J., eds.: Proceedings of the Workshop on
Frequent Itemset Mining Implementations (FIMI-04), Brighton, UK, November 1,
2004. Volume 126 of CEUR Workshop Proceedings. (2004) http://CEUR-WS.org/
Vol-126/.

11. Mielikäinen, T.: Separating structure from interestingness. In Dai, H., Srikant, R.,
Zhang, C., eds.: Advances in Knowledge Discovery and Data Mining, 8th Pacific-
Asia Conference, PAKDD 2004, Sydney, Australia, May 26-28, 2004, Proceedings.
Volume 3056 of Lecture Notes in Artificial Intelligence. Springer (2004) 476–485

12. Toivonen, H.: Sampling large databases for association rules. In Vijayaraman,
T.M., Buchmann, A.P., Mohan, C., Sarda, N.L., eds.: VLDB’96, Proceedings of
22th International Conference on Very Large Data Bases, September 3-6, 1996,
Mumbai (Bombay), India. Morgan Kaufmann (1996) 134–145

13. Bayardo Jr., R.J.: Efficiently mining long patterns from databases. In Haas,
L.M., Tiwary, A., eds.: SIGMOD 1998, Proceedings ACM SIGMOD International
Conference on Management of Data, June 2-4, 1998, Seattle, Washington, USA.
ACM Press (1998) 85–93

14. Mannila, H., Toivonen, H.: Levelwise search and borders of theories in knowledge
discovery. Data Mining and Knowledge Discovery 1 (1997) 241–258

15. Boros, E., Gurvich, V., Khachiyan, L., Makino, K.: On the complexity of gen-
erating maximal frequent and minimal infrequent sets. In Alt, H., Ferreira, A.,
eds.: STACS 2002, 19th Annual Symposium on Theoretical Aspects of Computer
Science, Antibes - Juan les Pins, France, March 14-16, 2002, Proceedings. Volume
2285 of Lecture Notes in Computer Science. Springer (2002) 133–141

16. Yang, G.: The complexity of mining maximal frequent itemsets and maximal
frequent patterns. [50] 344–353

17. Afrati, F.N., Gionis, A., Mannila, H.: Approximating a collection of frequent sets.
[50] 12–19

18. Karp, R.M., Luby, M., Madras, N.: Monte-Carlo approximation algorithms for
enumeration problems. Journal of Algorithms 10 (1989) 429–448

19. Pasquier, N., Bastide, Y., Taouil, R., Lakhal, L.: Discovering frequent closed item-
sets for association rules. In Beeri, C., Buneman, P., eds.: Database Theory -
ICDT ’99, 7th International Conference, Jerusalem, Israel, January 10-12, 1999,
Proceedings. Volume 1540 of Lecture Notes in Computer Science. Springer (1999)
398–416

20. Mielikäinen, T.: Finding all occurring sets of interest. In Boulicaut, J.F.,
Džeroski, S., eds.: 2nd International Workshop on Knowledge Discovery in In-
ductive Databases. (2003) 97–106

21. Kryszkiewicz, M.: Concise representation of frequent patterns based on disjunction-
free generators. In Cercone, N., Lin, T.Y., Wu, X., eds.: Proceedings of the 2001
IEEE International Conference on Data Mining, 29 November - 2 December 2001,
San Jose, California, USA. IEEE Computer Society (2001) 305–312

22. Uno, T., Asai, T., Uchida, Y., Arimura, H.: An efficient algorithm for enumerating
closed patterns in transaction databases. In Arikawa, S., Suzuki, E., eds.: Discovery
Science, 7th International Conference, DS 2004, Padova, Italy, October 2–5, 2004,
Proceedings. Volume 3245 of Lecture Notes in Computer Science. Springer (2004)
16–31

23. Boulicaut, J.F., Bykowski, A.: Frequent closures as a concise representation for
binary data mining. In Terano, T., Liu, H., Chen, A.L.P., eds.: Knowledge Dis-
covery and Data Mining, Current Issues and New Applications, 4th Pacific-Asia
Conference, PAKDD 2000, Kyoto, Japan, April 18-20, 2000, Proceedings. Volume
1805 of Lecture Notes in Computer Science. Springer (2000) 62–73

Transaction Databases, Frequent Itemsets 163

24. Mielikäinen, T.: Frequency-based views to pattern collections. In Hammer, P.L.,
ed.: Proceedings of the IFIP/SIAM Workshop on Discrete Mathematics and Data
Mining, SIAM International Conference on Data Mining (2003), May 1-3, 2003,
San Francisco, CA, USA. SIAM (2003)

25. Mielikäinen, T., Mannila, H.: The pattern ordering problem. [51] 327–338
26. Pei, J., Dong, G., Zou, W., Han, J.: On computing condensed pattern bases.

In Kumar, V., Tsumoto, S., eds.: Proceedings of the 2002 IEEE International
Conference on Data Mining (ICDM 2002), 9-12 December 2002, Maebashi City,
Japan. IEEE Computer Society (2002) 378–385

27. Xin, D., Han, J., Yan, X., Cheng, H.: Mining compressed frequent-pattern sets.
In Böhm, K., Jensen, C.S., Haas, L.M., Kersten, M.L., Larson, P.Å., Ooi, B.C.,
eds.: Proceedings of the 31st International Conference on Very Large Data Bases,
Trondheim, Norway, August 30 - September 2, 2005. ACM (2005) 709–720

28. Yan, X., Cheng, H., Han, J., Xin, D.: Summarizing itemset patterns: a profile-based
approach. In Grossman, R., Bayardo, R., Bennett, K.P., eds.: Proceedings of the
Eleventh ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, Chicago, Illinois, USA, August 21-24, 2005. ACM (2005) 314–323

29. Zaki, M.J., Ogihara, M.: Theoretical foundations of association rules. In: SIG-
MOD’98 Workshop on Research Issues in Data Mining and Knowledge Discovery.
(1998)

30. Boulicaut, J.F., Bykowski, A., Rigotti, C.: Free-sets: a condensed representation
of Boolean data for the approximation of frequency queries. Data Mining and
Knowledge Discovery 7 (2003) 5–22

31. Bastide, Y., Taouil, R., Pasquier, N., Stumme, G., Lakhai, L.: Mining frequent
patterns with counting inference. SIGKDD Explorations 2 (2000) 66–75

32. Calders, T.: Computational complexity of itemset frequency satisfiability. In:
Proceedings of the Twenty-Third ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems, June 13-18, 2004, Maison de la Chimie, Paris,
France. ACM (2004)

33. Mielikäinen, T.: On inverse frequent set mining. In Du, W., Clifton, C.W., eds.:
Proceedings of the 2nd Workshop on Privacy Preserving Data Mining (PPDM),
November 19, 2003, Melbourne, Florida, USA. IEEE Computer Society (2003)
18–23

34. Mielikäinen, T.: Implicit enumeration of patterns. [52]
35. Jukna, S.: Extremal Combinatorics: With Applications in Computer Science.

EATCS Texts in Theoretical Computer Science. Springer-Verlag (2001)
36. Calders, T.: Deducing bounds on the supports of itemsets. [49] 214–233
37. Calders, T., Goethals, B.: Mining all non-derivable frequent itemsets. In Elomaa,

T., Mannila, H., Toivonen, H., eds.: Principles of Data Mining and Knowledge
Discovery, 6th European Conference, PKDD 2002, Helsinki, Finland, August 19-
23, 2002, Proceedings. Volume 2431 of Lecture Notes in Artificial Intelligence.
Springer (2002) 74–865

38. Calders, T., Goethals, B.: Minimal k-free representations of frequent sets. [51]
71–82

39. Dexters, N., Calders, T.: Theoretical bounds on the size of condensed representa-
tions. [52] 46–65

40. Anthony, M., Biggs, N.: Computational Learning Theory: An Introduction. Pa-
perback edn. Cambridge University Press (1997)

41. Chazelle, B.: The Discrepancy Method: Randomness and Complexity. Paperback
edn. Cambridge University Press (2001)

164 T. Mielikäinen

42. Papadimitriou, C.H., Yannakakis, M.: On limited nondeterminism and the com-
plexity of V-C dimension. Journal of Computer and System Sciences 53 (1996)
161–170

43. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer-Verlag (1999)

44. Flum, J., Grohe, M., Weyer, M.: Bounded fixed-parameter tractability and log2 n
nondeterministic bits. In Diaz, J., Karhumäki, J., Sannella, D., eds.: Automata,
Languages and Programming: 31st International Colloquium, ICALP 2004, Turku,
Finland, July 12-16, 2004. Proceedings. Volume 3142 of Lecture Notes in Computer
Science. Springer (2004) 555–567

45. Ramesh, G., Maniatty, W.A., Zaki, M.J.: Feasible itemset distributions in data
mining: Theory and application. In: Proceedings of the Twenty-Second ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, June
9-12, 2003, San Diego, CA, USA. ACM (2003) 284–295

46. Eiter, T., Gottlob, G., Makino, K.: New results on monotone dualization and
generating hypergraph transversals. In: Proceedings on 34th Annual ACM Sym-
posium on Theory of Computing, May 19-21, 2002, Montréal, Québec, Canada.
ACM (2002) 14–22

47. Mielikäinen, T.: An automata approach to pattern collections. [52]
48. Kohavi, R., Brodley, C., Frasca, B., Mason, L., Zheng, Z.: KDD-Cup 2000

organizers’ report: Peeling the onion. SIGKDD Explorations 2 (2000) 86–98
http://www.ecn.purdue.edu/KDDCUP.

49. Meo, R., Lanzi, P.L., Klemettinen, M., eds.: Database Support for Data Min-
ing Applications: Discovering Knowledge with Inductive Queries. Volume 2682 of
Lecture Notes in Computer Science. Springer (2004)

50. Kim, W., Kohavi, R., Gehrke, J., DuMouchel, W., eds.: Proceedings of the Tenth
ACM SIGKDD International Conference on Knowledge Discovery and Data Min-
ing, Seattle, Washington, USA, August 22-25, 2004. ACM (2004)

51. Lavrač, N., Gamberger, D., Blockeel, H., Todorovski, L., eds.: Knowledge Discovery
in Databases: PKDD 2003, 7th European Conference on Principles and Practice of
Knowledge Discovery in Databases, Cavtat-Dubrovnik, Croatia, September 22-26,
2003, Proceedings. Volume 2838 of Lecture Notes in Artificial Intelligence. Springer
(2003)

52. Goethals, B., Siebes, A., eds.: KDID 2004, Knowledge Discovery in Inductive
Databases, Proceedings of the Third International Workshop on Knowledge Dis-
covery in Inductive Databases, Pisa, Italy, September 20, 2004, Revised Selected
and Invited Papers. Volume 3377 of Lecture Notes in Computer Science. Springer
(2005)

Multi-class Correlated Pattern Mining

Siegfried Nijssen1 and Joost N. Kok2

1 Albert-Ludwidgs-Universität, Georges-Köhler-Allee,
Gebäude 097, D-79110, Freiburg im Breisgau, Germany

2 LIACS, Leiden University, Niels Bohrweg 1, 2333 CA, Leiden, The Netherlands
snijssen@informatik.uni-freiburg.de

Abstract. To mine databases in which examples are tagged with class la-
bels, theminimumcorrelation constraint has been studied as an alternative
to theminimum frequency constraint.We reformulate previous approaches
and show that a minimum correlation constraint can be transformed into
a disjunction of minimum frequency constraints. We prove that this obser-
vation extends to the multi-class χ2 correlation measure, and thus obtain
an efficient new O(n) prune test. We illustrate how the relation between
correlation measures and minimum support thresholds allows for the reuse
of previously discovered pattern sets, thus avoiding unneccessary database
evaluations. We conclude with experimental results to assess the effectivity
of algorithms based on our observations.

1 Introduction

One of the oldest and most popular problems in machine learning is that of
classification. Classification algorithms are applicable to all databases in which
examples are tagged with class labels. Surprisingly, within inductive database
theory the problem of classification has received little attention. In this paper
we study a problem related to classification, which was first proposed by Bay
and Pazzani [2, 3] and later by Morishita and Sese [10]. These authors studied
the problem of mining contrast sets (name proposed by Bay and Pazzani) or
correlated itemsets (name proposed by Morishita and Sese). Both terms refer
to the same straightforward problem: given a database and a function which
computes a measure of correlation between a pattern and a target attribute
in the database, can we find all patterns that satisfy a minimum correlation
constraint? Clearly, from a conceptual point of view this problem is very similar
to the frequent itemset mining problem, which is to find all patterns that satisfy a
minimum support constraint. Compared to the minimum support constraint, the
minimum correlation constraint is however computationally more difficult as it is
neither monotonic nor anti-monotonic. Given that highly correlated patterns can
be useful features for classification algorithms, it can be argued that minimum
correlation is a constraint that should be supported by inductive databases. This
point was observed earlier, and besides Bay, Pazzani, Morishita and Sese, also
other authors have proposed algorithms to mine correlated patterns, for example
Zimmermann and De Raedt [12], or the closely related class association rules of
Liu et al. [9] and subgroups of Kavšek et al. [8].

F. Bonchi and J.-F. Boulicaut (Eds.): KDID 2005, LNCS 3933, pp. 165–187, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

166 S. Nijssen and J.N. Kok

In comparison with these previous approaches, this paper introduces one fun-
damentally new idea: that there is a relation between disjunctions of minimum
frequency constraints and minimum correlation constraints. This simple, but
important observation allows us to improve previous results and provide deeper
insight in the use of correlation constraints in inductive databases:

– In previous research [12] it was implied that to prune branches in a search
for correlated patterns, an O(2d) test for each node in this tree would be
required, where d is the number of class values. We show that an O(d) test
is sufficient.

– One of the supposed key features of inductive databases is that they treat
patterns as data, and that queries can also be defined on sets of patterns. We
show that many searches for highly correlated patterns can be reformulated
as filtering operations over sets of frequent patterns. Thus, once we have built
a set of frequent patterns, our observations show which different kinds of
correlation queries can be formulated over these patterns, without accessing
the data from which the patterns were obtained. This allows for the reuse of
pattern sets for multiple purposes.

The paper is organized as follows. In Section 2 we recall the problem of corre-
lated pattern mining and the notion of ROC spaces. We introduce the basic idea
of linking minimum frequency to minimum correlation. In Section 3 we consider
the more complex χ2 and information gain correlation measures, for the case of
two classes. In Section 4 we extend this approach to multiple classes. Section 5 dis-
cusses how to compute minimum support thresholds, and illustrates how sets of
patterns can be reused. Section 6 compares our approach to the work of Bay, Paz-
zani, Morishita and Sese. Section 7 lists several ways of using our observations in
Apriori-like algorithms, and provides experimental results. Section 8 concludes.

2 Plotting Frequent Patterns in ROC Space

In classification problems we consider databases D of examples, where each
example is labeled by one class in a domain of classes C through a function
f : D → C; we denote by Dc the set of examples for which the class label is c.
Rule learners repeatedly search for rules of the form x → c, where c is a class
label in C, x is a pattern in a pattern language X and a cover relation ' is
defined between patterns in X and examples in D. Rule learners search rules for
which ρ(x → c) is maximized or minimized, for a measure ρ such as accuracy,
weighted accuracy, gain, or χ2. The measure is computed from the contingency
table. In binary classification problems this table can be represented as follows:

a1(x)n1 (1 − a1(x))n1 n1

a2(x)n2 (1 − a2(x))n2 n2

a1(x)n1 + a2(x)n1 n1 + n2 − a1(x)n1 − a2(x)n2 n1 + n2

Here n1 is the number of examples in class 1, n2 is the number of examples in
class 2 and ai(x) is the fraction of examples of class i that is covered by the

Multi-class Correlated Pattern Mining 167

body of rule x → c. We call ai(x) the frequency of pattern x in class i. When
this is clear of the context we do not denote the argument x of the a function.
For convenience we furthermore denote N =

∑d
i=1 ni.

When inducing a classifier from a dataset the sizes of the classes (ni) can be
considered to be fixed. Here we furthermore assume that the head of the rule
is fixed to class 1. In Receiver Operating Characteristic curve (ROC) analysis
a1(x) is known as the true positive rate (TPR) and a2(x) is the false positive rate
(FPR). A ROC graph is a graph in which rules are depicted in the FPR-TPR
plane [6]. Ideally a rule has a FPR of zero and a TPR of one; the corresponding
point, which is depicted in the upper left corner of the ROC graph, is known as
ROC heaven. Heuristics of classification algorithms can be conceived as measures
that determine how far from ROC heaven a classifier is.

We will start our investigation by considering the very simple accuracy mea-
sure, which can be formalized as (a1(x)n1 + (1− a2(x))n2)/N , and is a function
of the vector a(x) = (a1(x), a2(x)), so we can write

ρacc(x→ c) = ρacc(a(x)) = ρacc(a1(x), a2(x)) = (a1(x)n1 + (1− a2(x))n2)/N.

Adapting terminology proposed by [10], we call vector a(x) the stamp point of
pattern x. In this paper for patterns the only property of importance is their stamp
point. Usually we therefore unify a pattern with its stamp point and drop the x
from our notation. If we solve the equation ρacc(a) = θ for an accuracy value θ, we
obtain the following isometric of possible stamp points that achieve this accuracy:

a1n1 + (1− a2)n2

N
= θ ⇐⇒ a1n1 − a2n2 = θN − n2

⇐⇒ a1 =
θN − n2

n1
+ a2

n2

n1
, (1)

which is a straight line in the ROC graph. An example for this isometric with
n1 = 20, n2 = 40 and θ = 44

60 is given in Figure 1.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

a1

a2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

a1

a2

Fig. 1. An isometric for the
accuracy measure

Fig. 2. An isometric for the
class neutral accuracy mea-
sure

The essential observation is the following. If we consider all rules for which
the accuracy is higher than 44

60 , then all these rules also have a frequency in
class 1 which is higher than 2

10 (enter a2 = 0 into equation 1 to verify this).

168 S. Nijssen and J.N. Kok

The minimum accuracy constraint can therefore be transformed into a tight
minimum frequency constraint on one class.

More formally, let b(i) denote the vector (b1, . . . , bd) where bi = 1 and bj = 0
for j �= i. Then to find the threshold θ1 on the frequency of class 1 we need to
solve the equation

ρ(θ1b(1)) = θ.

For accuracy we have that

θ1 =
θN − n2

n1
.

1. Transform minimum accuracy θ into minimum support θ1 for class 1;
2. Mine all frequent patterns F in D1 with minimum support θ1;
3. Determine the support in D2 of all frequent patterns in F ;
4. Prune all patterns from F for which accuracy is lower than θ;

Fig. 3. A simple algorithm for mining patterns with high accuracy

At this point we wish to give an example of the consequences of this obser-
vation. Consider the algorithm of Figure 3. Then the observation shows that
this algorithm is correct: to mine patterns with high accuracy we can use any
frequent pattern mining algorithm and postprocess its results.

The algorithm in the figure first determines the entire set of frequent pat-
terns; their frequencies in the other part of the data are evaluated second, thus
postprocessing results. A different approach is to evaluate each frequent pattern
immediately in the second part of the data (thus mixing the evaluation). We will
return later in more detail to these different approaches.

Given these observations on the 2 dimensional case of two target classes, the
question is how this applies to higher numbers of classes and other correlation
measures. This is what we study in the rest of the paper.

3 Class Neutral Measures

In the previous section we assumed that we only search for rules that have a
fixed class in the head of the rule. Usually, one is interested in patterns that
correlate with one of the target classes, independent of which class this is. In
that case, a class neutral measure should be used. A simple class neutral mea-
sure is max{ρacc(x → 1), ρacc(x → 2)}, which maximizes the correlation over
all possible consequences. For some threshold value θ the isometric is depicted
in Figure 2. In comparison with the original accuracy measure there is now a
‘second ROC heaven’. To find all patterns that achieve a certain accuracy, a
single minimum frequency no longer suffices. A second minimum frequency is
necessary, this time for the second class. Thus we have to solve two equations:

ρ(θ1b(1)) = θ and ρ(θ2b(2)) = θ. (2)

Multi-class Correlated Pattern Mining 169

0 0.25 0.50 0.75 1.00

a20

0.5

1.0

a1

0

10

20

30

40

50

60

0

0.25

0.50

0.75

1.00

a1

0 0.25 0.50 0.75 1.00
a2

Fig. 4. The χ2 correlation measure and the plane corresponding to a threshold value
(left) and its isometric (right)

Then, we have to find all patterns for which the frequency exceeds a minimum
threshold value, either on the first class, or on the second class, or on both; the
minimum frequency constraint on a(x) is thus

a1(x) ≥ θ1 ∨ a2(x) ≥ θ2. (3)

Besides accuracy many other correlation measures are in common used. One
of these is the χ2 statistic, which is the main focus of this work. The χ2 statistic
is computed as follows. Let Ei1 = (a1n1 + a2n2)ni/N , Ei2 = ((1− a1)n1 + (1−
a2)n2)ni/N , Oi1 = aini and Oi2 = (1− ai)ni, then

χ2(a) =
(O11 − E11)2

E11
+

(O12 − E12)2

E12
+

(O21 − E21)2

E21
+

(O22 − E22)2

E22
.

The χ2 measure and an isometric are depicted in Figure 4, for n1 = 20, n2 = 40
and θ = 15. Therefore also for χ2 we can obtain thresholds by solving equation
(2) and using equation (3) as pruning constraint; again the minimum frequency
thresholds of the classes are determined by the points where the χ2 statistic
crosses the a1 and a2 axis, respectively.

Just like for accuracy, there is a simple expression to compute the θi values.
We postpone this computation however to Section 5, at which point we have
introduced χ2 for higher numbers of classes.

More-or-less similar in shape to the χ2 measure is information gain:

ρgain(a)=−n1

N
log

n1

N
log−n2

N
log

n2

N
+

a1n1 + a2n2

N
(P11 log P11+P21 log P21)

+
(1− a1)n1 + (1− a2)n2

N
(P12 log P12 + P22 log P22) ,

where Pi1 = aini

a1n1+a2n2
and Pi2 = (1−ai)ni

(1−a1)n1+(1−a2)n2
. The gain measure can be

treated similar as the χ2 measure: the points where the gain isometric crosses
the a1 and a2 axes, respectively, determine the minimum frequency thresholds
for each of the two classes.

170 S. Nijssen and J.N. Kok

4 More Than Two Classes

Until now only situations were considered in which there are two target classes.
In general, however, there may be multiple target classes. To measure whether
there is a correlation between a pattern and the target classes, we will consider
the χ2 and information gain measures here; in the next section we will consider
accuracy. The contingency table is easily extended to the multi-class case:

a1n1 (1− a1)n1 n1
a2n2 (1− a2)n2 n2

...
...

...
adnd (1− ad)nd nd∑d

i=1 aini

∑d
i=1(1− ai)ni N

The definitions of Ei1, Ei2, Oi1 and Oi2, are straightforwardly extended to define
χ2 as χ2(a) =

∑d
i=1

(Oi1−Ei1)2

Ei1
+ (Oi2−Ei2)2

Ei2
. Similarly, also the definition of gain

ratio is extended. To give an impression of the shape of higher dimensional χ2

and information gain measures, isometrics for three-class classification problems
are given in Figure 5 and Figure 7.

0 0.25 0.50 0.75 1.00

a20

0.5

1.0

a1

0

0.17

0.33

0.50

0.67

0.83

1.00

0 0.25 0.50 0.75 1.00

a20

0.5

1.0

a1

0

17

33

50

67

83

00

0.13 0.25 0.38 0.50 0.63 0.75 0.88 1.00

a20.25

0.50

0.75

1.00

y

0.17

0.33

0.50

0.67

0.83

1.00

Fig. 5. Isometric for χ2

in a three-class classifica-
tion problem

Fig. 6. Isometric for χ2

in a three-class classifica-
tion problem; can a box
be fitted within the iso-
metric?

Fig. 7. Isometric for
information gain in a
three-class classification
problem

One of the main contributions of this paper is to anwer this question: suppose
that we want to find all itemsets for which χ2 or information gain exceeds a
predefined threshold value, is it possible to define a minimum frequency threshold
on each of the classes, similar to the two dimensional case? Intuitively, this means
that we want to prove that it is possible to put a ‘box’ completely inside the
isometric body, such that the corners of the box are determined by the points
where the isometric crosses the axes, as illustrated in Figure 6. In this section
we provide an outline of our proof. Details are given in the Appendix.

First, we introduce some notation. Let us denote by Bd the set of all vectors
(b1, b2, . . . , bd) such that bi ∈ {0, 1}. These vectors can be considered to be the
corners of a higher dimensional unit rectangle. For example, B2 = {(0, 0), (1, 0),

Multi-class Correlated Pattern Mining 171

(0, 1), (1, 1)}. By Bd,≥k we denote the subset of vectors in Bd for which the sum
of bi components is higher than k. As an example, B2,≥1 = {(1, 0), (0, 1), (1, 1)}
and B2,≥2 = {(1, 1)}.

Definition 1. A d−dimensional function ρ is a suitable correlation function iff
it satisfies the following two properties:

– ρ(a1, a2, . . . , ad) is convex;
– for every b ∈ Bd,≥2, every 0 ≤ α ≤ 1 and every 1 ≤ k ≤ d it must hold that:

ρ(α ·b1, . . . , α ·bk−1, α ·bk, α ·bk+1, . . . , α ·bd) ≤ ρ(α ·b1, . . . , α ·bk−1, 0, α ·bk+1, . . . , α ·bd).

As an example, consider the χ2 test for two classes. Among others, in [10] it
was shown that χ2 defines a convex function. The same can be shown for our χ2

function. The set B2,≥2 consists of one single vector {(1, 1)}. As χ2(α, α) = 0 it is
clearly true that χ2(α, α) ≤ χ2(α, 0) and χ2(α, α) ≤ χ2(0, α), for all 0 ≤ α ≤ 1.
This shows that the χ2 test for two classes defines a suitable correlation function.
Note that the χ2 function has several peculiar properties (χ2(1, 0) = χ2(0, 1) =
n1 + n2 and χ2(α, α) = 0), but that correlation functions are not required to
have these properties within our framework. We have the following theorem.

Theorem 1. Let ρ be a suitable correlation function. Consider a stamp point
a = (a1, a2, . . . , ad) and let Sa be the set of all stamp points (a′

1, a
′
2, . . . , a

′
d) with

0 ≤ a′
i ≤ ai. Then

max
a′∈Sa

ρ(a′) = max{ρ(a1, 0, . . . , 0), ρ(0, a2, 0, . . . , 0), . . . , ρ(0, 0, . . . , ad)}.

Proof. See Appendix.

From this theorem it follows that to compute an upper bound on the highest
achievable correlation value for a given pattern, it suffices to compute a correla-
tion value for each of the classes separately, or —equivalently— to consider only
d thresholds in the case of d classes. To show that this theorem is also usable in
practice, we also prove the following.

Theorem 2. The χ2 test on a contingency table of d classes defines a suitable
correlation function.

Proof. See Appendix.

These observations have the following consequences. Assume that we solve the
following equations

χ2(θ1b(1)) = θ, χ2(θ2b(2)) = θ, . . . χ2(θdb(d)) = θ,

similar to equation (2); then we can use the following as frequency constraint:

a1 ≥ θ1 ∨ a2 ≥ θ2 ∨ . . . ∨ ad ≥ θd,

172 S. Nijssen and J.N. Kok

similar to equation (3). Thus, we have a frequency constraint which can be
computed in linear time. In the next sectiom we consider how to compute θi for
the χ2 contraint.

We wish to conclude this section with an observation for another correlation
measure: information gain. We can show that the nice properties of χ2 do not
apply to information gain. Consider a database with three target classes of sizes
n1 = 30, n2 = 40 and n3 = 50. Then ρgain(0.9 × 30, 0.9 × 40, 0) > ρgain(0.9 ×
30, 0, 0). We can therefore not determine minimum frequency thresholds for each
of the classes by considering the points on the a1, . . . , ad axes through which
the iso-information gain body crosses. Still, intuitively, one should be able to
determine a largest possible hyper-rectangle that fits within an iso-information
gain body, and thus a set of minimum threshold values. We leave that issue as
future work.

5 Choosing Thresholds for χ2

In this section, we first show how thresholds can be computed for χ2. It appears
that this formula is remarkably simple and that we can draw several further
conclusions; the remainder of the section is devoted to listing some of these
consequences.

Theorem 3. Given a stamp point a = ajb(j). Then

χ2(a) =
(N − nj)ajN

N − ajnj
.

Proof. Without loss of generality we can assume that j = 1. Then we can split
the χ2 sum into two parts: the 1th row, and the other rows. For the first row
the contribution to χ2 is:

N
(n1a1 − n1a1n1

N)2

n1a1n1
+ N

((1− a1)n1 − n1(N−a1n1)
N)2

N(N − a1n1)
=

a1(N − n1)2

N − a1n1
.

For a row i > 1 the contribution to χ2 is:

N
(−nia1n1

N)2

nia1n1
+ N

(ni − ni(N−a1n1)
N)2

ni(N − a1n1)
=

a1nin1

N
+

a2
1n

2
1ni

N(N − a1n1)
=

a1n1ni

N − a1n1
.

If we sum all rows i > 1, the contribution of all these rows together is (N−n1)a1n1
N−a1n1

.

Summing this term and the term for the first row, we obtain (N−n1)a1N
N−a1n1

. �

From this theorem follows a simple closed formula for computing the threshold
minimum support for every class, starting from the χ2 threshold.

Theorem 4. Given a threshold χ2 value θ, the solution of χ2(θib(i)) = θ is

θi =
θN

N2 − niN + θni
.

Multi-class Correlated Pattern Mining 173

Proof. This follows immediately from Theorem 3. �

Until now we studied the use of a multi-dimensional χ2 statistic to measure
correlation when multiple target classes are involved. A different, perhaps more
straightforward way to deal with multiple classes is not to use a more complex
correlation function, but to repeatedly solve 2 dimensional search problems: as-
sume that we have d classes, then we can also build a database in which all
examples for an original class 1 ≤ i ≤ d are put into a new class ‘A’ and all
examples which are not in class i are put into class ’B’. By searching for corre-
lated patterns in this newly labeled database, one would discover patterns that
achieve the highest correlation with class i, or its complement; by repeating this
procedure for each class one finds correlated patterns for each original class. A
natural question is how this approach compares to the approach of the previous
section.

To study this different setup we require some additional notation. Similar
to the symbols ai, ni, N , let us introduce the symbols aj

i , nj
i and N j for the

two-class contingency table for class j:

aj
1n

j
1 (1− aj

1)n
j
1 nj

1
aj
2n

j
2 (1− aj

2)n
j
2 nj

2∑d
i=1 aj

in
j
i

∑d
i=1(1− aj

i)n
j
i N j

The entries are computed from the entries of the original contingency table:
aj
1 = aj , aj

2 = (
∑d

k=1 aknk − ajnj)/nj
2, nj

1 = nj , nj
2 =

∑d
k=1 nk − nj = N − nj

and N j = N . We can also compute χ2 for this new contingency table; let us
denote this value by χ2

j (a
j). Then one can show that the following is not generally

true:
χ2

j (a
j) = χ2(a);

the correlation computed over the 2 class table does not equal the correlation
computed over the table with multiple classes. As an example, for n1 = 30,
n2 = 40 and n5 = 50 it does not hold that χ2

1(0.9, 0.9× 40/90) = χ2(0.9, 0.9, 0).
Of interest is now to study how the minimum support thresholds for the two-

class search problems compare to the thresholds for the single (original) higher
dimensional correlated pattern search. From Theorem 3 follows the following:

Theorem 5. Given a stamp point a = ajb(j) for the d dimensional search
problem. Then

χ2
j (aj , 0) = χ2(a).

Proof. If we consider the formula of Theorem 3, we note that the χ2 value only
depends on the total number of examples and the number of examples in the
given class j. In the multi-class situation and the constructed two-class situation
these are the same, and therefore also the threshold χ2 values. �

This theorem has a practical consequence. Assume that we have determined
all frequent patterns for all two-class search problems (for both classes of each

174 S. Nijssen and J.N. Kok

problem), then it follows that we have also computed all necessary candidate
patterns for the higher dimensional correlation measure. We only need to post-
process the results of the two-class search problems to fill in missing support
values and obtain exact χ2 values; although therefore access to the database is
required, a new frequent pattern search is not necessary.

A natural question is then whether the reverse is also true: assume that
we have determined all frequent patterns for each of the classes of the multi-
dimensional χ2 statistic, have we then also determined all patterns that achieve
a high correlation in each of the two-dimensional correlation problems?

Summarizing, for a class j we are interested in patterns for which χ2
j (a

j
1, a

j
2) ≥

θ. We assume that we have all patterns for which a1b(1) ≥ θ1∨ . . .∨adb(d) ≥ θd.
Then it is clear from Theorem 5 that we have also determined all patterns for
which aj

1 = aj ≥ θj = θj
1. However, we require an additional theorem to prove

that we also find all patterns for which aj
2θ

j
2 (and thus all patterns are found for

which aj
1 ≥ θj

1 ∨aj
2 ≥ θj

2, which is the necessary condition to find all patterns for
which χ2

j (a
j
1, a

j
2) ≥ θ).

Theorem 6. If for a stamp point a we have aj
2 ≥ Nθ

N2−(N−nj)(N−θ) then for at
least one 1 ≤ i ≤ d, i �= j:

ai ≥
Nθ

N2 − ni(N − θ)
.

Proof. Without loss of generality we can assume that j = 1. Then from the
assumption follows that

d∑
i=2

aini ≥
Nθ(N − n1)

N2 − (N − n1)(N − θ)
.

Now let us assume that ai < Nθ
N2−ni(N−θ) , for all 1 < i < d. Then we have that

adnd ≥
Nθ(N − n1)

N2 − (N − n1)(N − θ)
−

d−1∑
i=2

aini

≥ Nθ(N − n1)
N2 − (N − n1)(N − θ)

−
d−1∑
i=2

Nθni

N2 − ni(N − θ)

≥ Nθ(N − n1)
N2 − (N − n1)(N − θ)

− Nθ(N − n1 − nd)
N2 − (N − n1)(N − θ)

≥ Nθnd

N2 − (N − n1)(N − θ)

≥ Nθnd

N2 − nd(N − θ)
; (4)

this shows that at least one term in the logical or must satisfy the given constraint.
�

Multi-class Correlated Pattern Mining 175

From this theorem follows that to find correlated patterns for two-class patterns,
it suffices to postprocess the result from a multi-dimensional correlation search;
access to the database is not even required.

The advantage of these observations is that they provide insight in the ways
that sets of frequent patterns can be reused for different purposes. They show
that if we search patterns that are frequent in individual classes, we can use these
patterns both for multi-dimensional correlation measures as for more simplistic
two-dimensional correlation measures.

At this point we can also ask ourselves how the two-way χ2 correlation measure
compares to the accuracy measure of Section 3. Assume that were first interested
in finding all patterns for which χ2(a) ≥ θχ2 , then we had to find all patterns
for which a1 ≥ θχ2,1 = Nθ

N2−n1(N−θ) ∨ a2 ≥ θχ2,2 = Nθ
N2−n2(N−θ) . Now assume

that we want to find all patterns which satisfy a minimum accuracy constraint,
then we can observe the following. If we solve the equation

θacc,iN − (N − ni)
ni

= θχ2,i,

we obtain

θacc,i =
Nθχ2,ini

N(N2 − ni(N − θ))
+

N − ni

N
;

Then for minimum accuracy thresholds θacc ≥ maxi θacc,i we can compute all
patterns with high accuracy simply by postprocessing the results of the previous
search; this follows from the comparison of class thresholds.

The same approach extends to many other situations. For example, assume
that we want to contrast two classes against each other, disregarding examples
of all other classes. If we already know the frequent patterns for the multi-class
case, we can compute for which threshold on minimum χ2 correlation between
two classes we do not need to recompute the frequent patterns.

To conclude this section, let us sketch a possible scenario in which these ob-
servations can be exploited. Assume that we have a table with d > 2 classes, and
the user is first interested in finding patterns that are highly correlated according
to a higher dimensional χ2 statistic. Then we showed that we can transform this
minimum correlation threshold into minimum frequency thresholds, and perform
a pattern search for these thresholds; then we will find all patterns that achieve
high correlation, but also some additional patterns. To answer the user’s query,
we postprocess the patterns. Assume that we store all patterns that achieve a
high frequency in at least one of the classes, and that we also store the supports
in all classes.

Then if the user changes her mind, and becomes interested in another kind of
question, we showed how we can exploit the previously stored pattern set: if the
user wants to find all patterns which have a high accuracy with respect to one
class, we can exactly compute for which thresholds we can reuse the previously
stored pattern set, and thus, we showed how a second access to the data for this
second question can be avoided.

176 S. Nijssen and J.N. Kok

6 Related Work

From our point of view these results are a more simple and more efficient for-
mulation of the methodology of Bay and Pazzani [2, 3], Morishita and Sese [10]
and Zimmermann and De Raedt [12]. To show this, we will briefly review this
method. By these authors the contingency table is denoted as follows:

y m− y m
x− y n−m− (x− y) n−m

x n− x n

The χ2 statistic is defined as a function from (x, y). If a pattern with stamp
point (x, y) is refined, it is shown by Morishita and Sese that an upper bound
for the χ2 value of refined patterns is max{χ2(y, y), χ2(x − y, 0)}. Clearly, this
notation is a transformation of ours. The claim of Morishita and Sese can be
specified equivalently in our notation. Assume that we are given a minimum
χ2 threshold. In our notation Morishita and Sese use the upper bound to stop
refining if max{χ2(0, a2), χ2(a1, 0)} < θ. From Figure 4 we can conclude that
an equivalent way to specify this test is a2 < θ2 ∧ a1 < θ1, where θ1 and θ2 are
chosen such that χ2(0, θ2) = θ and χ2(θ1, 0) = θ, where θ is the given threshold
on χ2. We can thus conclude that the algorithm of Morishita and Sese which
finds all correlated patterns, is a frequent itemset mining algorithm with multiple
minimum support constraints.

By Zimmermann et al. [12] it was implied that an exponential number of χ2

evaluations would be required to compute a reliable upperbound on the highest
achievable χ2 value. Extending to multiple classes the correspondence between
Morishita and Sese’s approach and ours, we can prove that a linear number of
thresholds is sufficient and equally strong pruning power is obtained.

Our observation also provides additional insight in the work of Bay and Paz-
zani [2]. They propose to prune branches in a search tree using both minimum
support constraints and bounds on the highest achievable correlation (similar
to Morishita and Sese). We can see now that explicit pruning on class frequen-
cies may not be required, as the correlation constraint transforms into a mini-
mum frequency constraint. Thus, our observation makes it possible to compare
the pruning power of several constraints. Additionally, our pruning strategy for
multiple classes can be shown to be more tight than Bay and Pazzani’s.

Much work has been done on class association rules, which are rules with high
confidence and support, and a fixed attribute in the rule head. Using ROC spaces,
it can be seen that the confidence constraint transforms into a maximum support
constraint, but not in a minimum support constraint. If separate supports for
each class are specified, such as by Liu et al. in [9], we can see now that the
amount of search tree pruning is the same as for the other algorithms.

7 Algorithms and Experimental Results

The observations of the previous sections can be exploited in algorithms in sev-
eral ways. In this section, we provide some details of algorithms that exploit

Multi-class Correlated Pattern Mining 177

our theory, where we restrict ourselves to integrating correlated pattern mining
in the well-known trie based Apriori algorithm [1]; integration in other kinds
of algorithms is left as possible future work, but is expected to deliver similar
results. To test the performance of our proposed algorithms, we implemented
several of them; this section also contains experimental results obtained from
running these implementations.

All our experiments were run on an Intel Pentium(R) 4 CPU 2.80GHz with 2GB
main memory. We used datasets that we obtained from the UCI (see Figure 8).
Datasets with small and large numbers of target classes were used; furthermore
the datasets vary in size and number of attributes.

To implement our algorithms, we extended the Apriori implementation of
Ferenc Bodon [4]. Although this implementation is not the fastest, it has the
advantage that it is small and clean; thus, we could easily change settings and
compare them to each other. Unless pointed out otherwise we use the optimisa-
tion of this algorithm which loads the dataset in main memory.

Name N d Comments
Internet Advertisements 3279 2 Class sizes: 2821, 458; numeric attributes not used
Mushroom 8124 2 Class sizes: 4208, 3916
Chess (KRKPA7) 3196 2 Class sizes: 1669, 1527
Chess (KRK) 28056 18 Largest class sizes: 4553, 4194; smallest: 27
Covertype 581012 7 Largest class sizes: 283301, 211840, 35754;

smallest: 2747; 8 discretized numeric attributes

Fig. 8. UCI datasets that we used in our experiments [5]

Choosing thresholds in practice. The first topic that we wish to study in practice
is the choice of threshold values. In statistics there are some rules of thumb for
the choice of χ2 thresholds. The most commonly used rule is that the p-value
of the test should be 5%. The p-value is the probability of obtaining a given
statistic, or a better statistic, if no association between the attributes of an
instance and its class is assumed. A parameter for computing the p-value is the
number of degrees of freedom of the test (which is d − 1 in our case). For a
given number degrees of freedom, a threshold p-value can be transformed into a
threshold on χ2. Some values are illustrated in Figure 9.

In practice it turns out to be hard to transform this rule of thumb into vi-
able minimum support thresholds. On the chess dataset (KRKPA7) a minimum
support of 4 would be required on the first class for a minimum χ2 threshold of
3.84. On most datasets such a support value is much too low; on this particular
dataset if we use a χ2 threshold of 418, which results in an (absolute) support
threshold of 400 in this first class, we already obtain > 2.000.000 patterns that
are frequent in at least one of the two classes.

Thus, computable minimum support thresholds correspond to very low p-
values, which is desirable. There are however more issues involved in the de-
termination of good thresholds. One of the advantages of using relatively high

178 S. Nijssen and J.N. Kok

Degrees of freedom
1 6 16

0.05 3.84 12.59 26.30
0.01 6.64 16.81 32.00

p-
va

lu
e

0.001 10.83 22.46 39.25
10−300 36.00 51.62 73.39

Fig. 9. The correspondence between χ2 values and p-values for the degrees of freedom
relevant for the databases in the experiments

minimum support thresholds is that it reduces the risk that expected values in
the contingency table become very low. A typical rule which statisticians use to
estimate the reliability of the χ2 test is

χ2 can be used if no more than 20% of the expected frequencies are less
than 5 and none is less than 1.

For example, in the KRKPA7 dataset, in which 52% of the examples are in class
‘won’, we would require a minimum support threshold of 10 on this class to avoid
getting expected values which are lower than 5.

We could also transform this statistician’s rule differently into combinations of
minimum frequency constraints. In this paper we will not study this possibility
further.

As for a database of size N the highest achievable χ2 value is N , we will
choose χ2 thresholds which are percentages of N .

Linear vs Exponential search space pruning. Our second experiment involves a
comparison of pruning algorithms. The setup of the experiment is as follows: we
modify the original Apriori algorithm such that with every pattern in the trie
not one support, but multiple supports are stored — for each class one. When
we pass an example through the trie, like in the original Apriori algorithm, we
only increase counters of the class to which the example belongs. Thus we obtain
a simple mixing approach (see Section 2). When we have to determine whether
an itemset should be pruned we consider two alternatives:

– our linear disjunction of minimum frequency tests;
– a generalization of the approach of Morishita and Sese which is exponential

in d [10, 12].

The exponential generalization of Morishita and Sese (as also implied in [12])
works as follows. Let a be a stamp point, and consider all ai which are not zero.
Then by setting a subset of these ai’s to zero, we obtain a new stamp point
which may be an upperbound on χ2. By computing χ2 for all these new stamp
points, and determining the maximum, we obtain the upper bound.

Results which compare these approaches for several datasets are given in
Figure 10. It is clear that only if the number of target classes grows larger, the
linear pruning test becomes interesting. At first sight it may seem strange that
a decrease in threshold does not always result in much longer runtimes. This

Multi-class Correlated Pattern Mining 179

Dataset d θ Lin. Exp. # Cand. # Freq. # Corr.
Mushroom 2 12.0% 15.1s 15.1s 158021 157243 141953
Mushroom 2 10.0% 36.1s 36.1s 284590 283699 255037
Cover type 7 1.0% 19.9s 33.7s 208246 150610 42784
Cover type 7 0.5% 33.0s 63.3s 550169 433807 151952
Chess (KRK) 18 1.0% 0.8s 108.3s 13220 8029 2637
Chess (KRK) 18 0.5% 0.9s 111.3s 23246 13760 6610

Fig. 10. Experiments with a linear (Lin.) and an exponential (Exp.) test for pruning
the search space. Given are run times (Lin. and Exp.); number of candidates (# Cand.),
number of frequent patterns (# Freq.) and number of correlated patterns exceeding
the θ threshold (# Corr.).

can be explained by the fact that the exponential approach only generates all
subsets for coordinates which are non-zero. Although the number of candidates
that is evaluated is much larger for a lower threshold, many of the additional
candidates have zeros in many coordinates, and require less evaluation time than
the patterns which have high support values in all classes.

Postprocessing Sets of Patterns. We showed that in stead of recomputing all
frequent patterns, it is often possible to reuse the same set of frequent patterns
for different kinds of correlation queries. In this section we provide a short in-
vestigation of this idea. To this purpose we use the Cover type dataset, which
consists of 7 target classes. We are interested in two kind of correlated pat-
terns: patterns that correlate with all classes according to a 7-dimensional χ2

statistic, and patterns that correlate with the first (largest) class according to a
2-dimensional χ2 statistic that compares the first class with the aggregation of
all other classes. For both correlated statistics we wish to use the same thres-
hold value.

We use 2 kinds of algorithms. First, we have the basic mixing algorithm that
we used earlier this section. We can start this algorithm two times to answer both
questions (see Figure 11, rows ‘Search 7 dimensional’ and ‘Search 2 dimensional’).
Another possibility is to run the 7 dimensional correlation query first, and to
store all frequent patterns in an additional trie during the run of the algorithm1.
We answer the second query by scanning the previously constructed trie.

To obtain more insight in the run time behavior of the implementations we
also include in Figure 11 the run times of an implementation which does not
load the database in memory, but rescans the data from disc, like the original
Apriori algorithm.

In the experiment we can see that the time to answer a query form a con-
structed trie is much shorter than to compute the same result from data. Most
queries can be answered within 2 seconds.

On the other hand, we also see that our implementation requires more time
to construct a trie of all patterns in main memory. In some cases the additional

1 We require an additional trie as the Apriori implementation removes unnecessary
short patterns from the trie when generating longer candidates.

180 S. Nijssen and J.N. Kok

Memory From disc
χ2 Threshold 1.0% 0.5% 1.0% 0.5%
Search 7 dimensional 19.9s 33.3s 82.6s 129.9s
Search 2 dimensional 7.9s 10.6s 27.7s 40.4s
Search 7 dim., store, query once 34.9s 66.3s 99.2s 164.9s
Search 7 dim., store, query twice 35.3s 67.6s 99.8s 166.6s

Fig. 11. A comparison between algorithms that compute patterns from data and from
pattern sets

time required for this construction is longer than the time required to perform an
additional search for correlated patterns with a lower dimensional χ2 statistic.

It can be expected that 2 dimensional χ2 searches require less time than 7
dimensional ones, as for the 7 dimensional case some classes have rather low min-
imum threshold values. In the 2 dimensional case the small classes are summed
together.

Some differences in run time are most likely a consequence of implementation
issues and side effects of the architecture of modern computers. For example,
we cannot otherwise explain that the run time for building the additional trie is
larger when loading the data from disc, while in our implementation both the
trie datastructures and the trie algorithms used during the construction of the
second trie are exactly the same.

Dataset θ Mushroom 10% Mushroom 12% Internet 3.5% Cover t. 0.5%
Memory Disc Memory Disc Memory Disc Memory Disc

Mixing 36.1s 47.0s 15.5s 25.0s 33.1s 37.4s 10.7s 40.6s
Class 1 search 10.4s 17.5s 10.0s 16.5s <0.1s <0.1s 4.3s 16.1s
Class 2 search 10.4s 22.3s 1.2s 3.9s 17.9s 20.5s 5.1s 15.6s
Cl. 1 search + Cl. 2 count 18.3s 39.5s 17.5s 29.8s <0.1s <0.1s 16.2s 29.6s
Cl. 2 search + Cl. 1 count 18.7s 31.1s 3.5s 10.1s 35.0s 41.7s 8.6s 20.5s

Fig. 12. Comparison of evaluation strategies

Evaluation Strategies. In our previous experiment we used a mixing approach, in
which all patterns are evaluated in all classes. Another approach is to postprocess
results. The simplest way is to proceed is illustrated in Figure 13; first one
performs a search for frequent patterns in class 1, and stores these into a new trie;
then we evaluate these frequent patterns in the part of the database correponding
to the second class. Finally, we repeat the procedure with the classes reversed.

An overview of some experimental results is given in Figure 12. What is im-
mediately remarkable in this table is the rather long additional time required
to evaluate frequent patterns for the second class of examples. We investigated
this phenomenon in detail, and found that the additional run time is not caused
by scanning the examples of the second class; this scan is performed in < 2s in
all cases. Furthermore, the additional run time is not (entirely) spent building

Multi-class Correlated Pattern Mining 181

1. Transform minimum χ2 into minimum supports θ1 and θ2;
2. Mine all frequent patterns F1 in D1 with minimum support θ1;
3. Determine all supports of patterns in F1 in D2; 4. Prune all patterns from
F1 for which χ2 is lower than θ;
5. Mine all frequent patterns F2 in D2 with minimum support θ2;
6. Determine all supports of patterns in F2 in D1; 7. Prune all patterns from
F1 for which χ2 is lower than θ;
8. (Optional) Merge the sets F1 and F2.

Fig. 13. A simple algorithm for mining patterns with high χ2 value

the second trie, as the additional run time is dependent on the evaluation strat-
egy (from memory or from disk). The main slow down seems to be caused by
the mere allocation of additional main memory, and a resulting memory ineffi-
ciency of evaluating patterns in the first class. Thus, we can assume that most
differences in this table are rather hardware dependent, or within margins of
implementation details. We tried several further variations — including using
different item orders for both classes, evaluating tries in the second class during
the search in the first class, and so on, but in all cases the results do not seem to
improve significantly. Thus, we can conclude that there are some differences in
run time behavior of the several evaluation strategies, but that these differences
are not very significant.

8 Conclusions

In this paper we showed that to find all patterns that correlate with a target
attribute, it is sufficient to search for all patterns that satisfy a set of frequency
thresholds, where these thresholds can be computed exactly by filling in a min-
imum correlation threshold in a correlation measure, such as information gain,
accuracy, weighted accuracy or χ2. For the χ2 measure we showed that this ap-
proach can even be used even if the target attribute has multiple values. We
illustrated that a major consequence of this observation is that we can reuse
pattern bases: if we know all patterns that satisfy a given disjunction of mini-
mum frequency constraints, we can reuse these patterns to answer many kinds
of correlation queries.

To illustrate the use of our theory, we gave several algorithms that exploit
it. Although several algorithmic variations follow from our theory that are not
significantly better in terms of efficiency, we showed that the main contributions
of the paper do make sense:

– for large numbers of target attribute values, the reduction in run time for
the O(d) prune test is significant;

– to reuse existing sets of patterns is more efficient than to recompute corrated
patterns from data.

Much further research can be considered in this direction. In this paper we
studied only a small amount of correlation measures, and showed only for a few

182 S. Nijssen and J.N. Kok

of them how they relate to each other. Future inductive databases should provide
a wide range of correlation measures and should be able to relate them to each
other to reuse existing pattern bases efficiently. We already gave some attention
to the reliability of the χ2 test, but more work could be done in this direction.
For example, for small expected values in the contingency table Fischer’s exact
test is considered to be more reliable than the χ2 test. To ’automatically’ switch
to a more reliable test and still find all patterns, we require a further theory on
the differences between the tests.

In our experiments we showed how correlated pattern mining can be per-
formed on top of an implementation of the traditional Apriori frequent itemset
mining algorithm. There are many kinds of algorithms, such as FP Growth
[7] or Eclat [11], which could incorporate the same ideas. Finally, condensed
representations for answering correlated pattern mining queries have not been
studied yet.

Acknowledgements. This work was partly supported by the EU FET IST
project IQ (“Inductive Querying”), contract number FP6-516169.

References

1. R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I. Verkamo. Fast discovery
of association rules. In Advances in knowledge discovery and data mining, pages
307–328, 1996.

2. S. D. Bay and M. J. Pazzani. Detecting change in categorical data: Mining contrast
sets. In Proceedings of the 5th International Conference on Knowledge Discovery
and Data Mining (KDD), pages 302–306. ACM Press, 1999.

3. S. D. Bay and M. J. Pazzani. Detecting group differences: Mining contrast sets. In
Data Mining and Knowledge Discovery, volume 5, pages 213–246. Kluwer Academic
Publishers, 2001.

4. F. Bodon. Surprising results of trie-based FIM algorithms. In Proceedings of
the Workshop on Frequent Itemset Mining Implementations (FIMI), volume 90 of
CEUR Workshop Proceedings, 2004.

5. C.L. Blake D.J. Newman, S. Hettich and C.J. Merz. UCI repository of machine
learning databases, 1998.

6. J. Fürnkranz and P. Flach. ROC ’n’ rule learning – towards a better understanding
of covering algorithms. In Machine Learning, volume 58, pages 39–77, 2005.

7. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In Proceedings of the ACM SIGMOD International Conference on Management of
Data, pages 1–12, 2000.

8. B. Kavšek, N. Lavrač, and V. Jovanoski. Apriori-SD: Adapting association rule
learning to subgroup discovery. In Proceedings of the Fifth International Sym-
posium on Intelligent Data Analysis, volume 2810 of Lecture Notes in Computer
Science, pages 230–241. Springer-Verlag, 2003.

9. B. Liu, Y. Ma, and C.-K.Wong. Improving an exhaustive search based rule
learner. In Proceedings of the 4th European Conference on Principles and Practice
of Knowledge Discovery in Databases (PKDD), volume 1910 of Lecture Notes in
Artificial Intelligence, pages 504–509, 2000.

Multi-class Correlated Pattern Mining 183

10. S. Morishita and J. Sese. Traversing itemset lattices with statistical metric pruning.
In Proceedings of the Nineteenth ACM SIGACT-SIGMOD-SIGART Symposium on
Database Systems (PODS), pages 226–236, 2000.

11. M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li. New algorithms for fast
discovery of association rules. In Proceedings of the Third International Conference
on Knowledge Di scovery and Data Mining (KDD), pages 283–286, 1997.

12. A. Zimmermann and L. De Raedt. Cluster-grouping: From subgroup discovery to
clustering. In Proceedings of the 15th European Conference on Machine Learning
(ECML), volume 3201 of Lecture Notes in Computer Science, pages 575–577, 2004.

A Proof Outlines

In this Appendix we provide some short outlines of the proofs of Theorems 1
and 2. We will illustrate our argumentation in the case of a target attribute with
3 classes. First, however, we require the following lemma.

Lemma 1. Let ρ be a suitable correlation function. Given a binary vector b ∈
Bd,≥2, then for every k in this vector for which bk = 1 it holds that:

ρ(αb) ≤ ρ(αb′),where b′ is a vector such that b′k = 1 and b′i = 0 for i �= k.

Proof. This follows from the second constraint on suitable correlation functions,
which states that by setting one coordinate to zero the correlation value can
only increase. More formally, the vector b consists of ones at positions i1, . . . , ik,
while other bits are zero. By setting first i1 to zero, than i2, and so on, until
ik−1 is zero, a sequence of bit vectors results, for which the correlation values
increase monotonically. As we did not assume any order on the indexes in i, we
can conclude that we can construct a sequence which reduces every bit vector b
to a bit vector in which only one bit is one. �

In Figure 14 this is illustrated for the three-dimensional case. Consider the
vector α · (1, 1, 1) = (α, α, α). According to the second constraint on correla-
tion functions, ρ(α, α, α) ≤ ρ(0, α, α) ≤ ρ(0, 0, α). Furthermore, among others,
ρ(α, 0, α) ≤ ρ(α, 0, 0). The theorem does not claim that ρ(α, 0, α) ≤ ρ(0, α, 0)
holds.

α

α

α

0
a2−axis

a1−axis

a3−axis 1/2

3/4

1/2

0

a2−axis

a1−axis

a3−axis

Fig. 14. Illustration of Lemma 1 Fig. 15. An example stamp point

184 S. Nijssen and J.N. Kok

Proof. (Theorem 1). As the function ρ is assumed to be convex the following
must hold:

max
a′∈Sa

ρ(a′) = max
b∈Bd

ρ(a1 · b1, a2 · b2, . . . , ad · bd).

This follows from the property that for convex functions any domain that can
be characterized by a bounding polygon is maximized on one of the vertexes of
the polygon. We now have to show that we can discard all elements of Bd,≥2.

Consider the given stamp point a = (a1, . . . , ad) and consider one of its di-
mensions k such that ak = max1≤j≤d aj . Then the following points define a d−1
dimensional rectangle:

{ak · b | b ∈ Bd, bk = 1}

The stamp point a is an element of this rectangle, as for all ai it holds that
0 ≤ ai ≤ ak. Please note that a rectangle in any dimension can be defined by
giving two points ‘opposite’ from each other. The rectangle here is defined by
the two points (0, . . . , ak, . . . , 0) and (ak, . . . , ak).

From the convexity of ρ it follows that for a given a with ak = max1≤j≤d aj :

max
b∈Bd,bk=1

ρ(ak · b) ≥ ρ(a).

From Lemma 1 it follows that maxb∈Bd,bk=1 ρ(ak · b) = ρ(ak · b), where b is the
vector in which all elements are zero except bk. For any given stamp point a we
may therefore conclude that ρ(a) ≤ ρ(ak · b), where ak = max1≤i≤d ai and b is
a vector that is zero in all coordinates except for the kth, which is 1. �

As an example consider the following stamp point: (1
2 , 3

4 , 1
2). This stamp point

is illustrated in Figure 15. What we wish to show is that we do not need to
consider this stamp point, as its correlation value is always lower than that of
one of the points in {(1

2 , 0, 0), (0, 3
4 , 0), (0, 0, 1

2)}. This would show that the only
points that we need to consider are in {(1

2 , 0, 0), (0, 3
4 , 0), (0, 0, 1

2)}.
As a2 = 3

4 ≥
1
2 = a1 = a3 the binary vectors of importance are {b | b ∈

Bd, b2 = 1} = {(0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 1, 1)}. After multiplication with
3
4 the rectangle {(0, 3

4 , 0), (0, 3
4 , 3

4), (3
4 , 3

4 , 0), (3
4 , 3

4 , 3
4)} is obtained. This rectan-

gle is highlighted in the Figure. The original stamp point is part of this
rectangle.

From Lemma 1 it follows that max{ρ(0, 3
4 , 0), ρ(0, 3

4 , 3
4), ρ(3

4 , 3
4 , 0), ρ(3

4 , 3
4 , 3

4)} =
ρ(0, 3

4 , 0). Due to convexity all points within the rectangle are lower than the high-
est point on the bounding polygon, therefore also ρ(1

2 , 3
4 , 1

2) ≤ ρ(0, 3
4 , 0). This

proves that we do not need to consider the given stamp point. Similar arguments
apply to the points in {(1

2 , 3
4 , 0), (0, 3

4 , 1
2), (1

2 , 0, 1
2)}.

What remains to be shown is that suitable correlation functions indeed exist.
We will show this in the proof of the following theorem.

Proof. (Theorem 2). It was already observed in other work that the χ2 function
for multiple classes is convex [12]. Here we concentrate on the second constraint.
As one can always change the order of arguments of ρ without loss of generality
we may state that we consider the following change in a contingency table:

Multi-class Correlated Pattern Mining 185

αn1 (1 − α)n1 n1
αn2 (1 − α)n2 n2
.
.
.

.

.

.

.

.

.
αnk−2 (1 − α)nk−2 nk−2
αnk−1 (1 − α)nk−1 nk−1
0 nk nk

.

.

.

.

.

.

.

.

.
0 nd nd∑k−1

i=1 αni
∑d

i=1 ni − ∑k−1
i=1 αni

∑d
i=1 ni

⇒
αn1 (1 − α)n1 n1
αn2 (1 − α)n2 n2
.
.
.

.

.

.

.

.

.
αnk−2 (1 − α)nk−2 nk−2
0 nk−1 nk−1
0 nk nk

.

.

.

.

.

.

.

.

.
0 nd nd∑k−2

i=1 αni
∑d

i=1 ni − ∑k−2
i=1 αni

∑d
i=1 ni

We denote the χ2 value of the contingency table before the change as χ2
n(α, k);

after the change the χ2 value is χ2
n(α, k − 1). We show the following:

χ2
n(α, k)− χ2

n(α, k − 1) =

α(α− 1)nk−1

(∑d
i=1 ni

)2

(∑k−2
i=1 (1− α)ni +

∑d
i=k−1 ni

) (∑k−1
i=1 (1− α)ni +

∑d
i=k ni

) . (5)

Clearly, for 0 ≤ α ≤ 1 it holds that χ2
n(α, k) − χ2

n(α, k − 1) ≤ 0 and therefore
that χ2

n(α, k) ≤ χ2
n(α, k − 1). We show now how the first term of equation (5)

can be rewritten into the second term. The right term is defined as

d∑
i=1

(Ei1 −Oi1)2

Ei1
+

(Ei2 −Oi2)2

Ei2
− (E′

i1 −O′
i1)

2

E′
i1

− (E′
i2 −O′

i2)
2

E′
i2

, (6)

where

Ei1 =
α(n1 + · · ·+ nk−1)ni

N
, Oi1 =

{
αni if i ≤ k − 1;
0 otherwise;

furthermore, Ei2 = ni − Ei1, Oi2 = ni −Oi1, O′
ij is defined similar to Oij , and

E′
i1 = Ei1 −

αnk−1ni

N
, E′

i2 = Ei2 +
αnk−1ni

N
.

Equation (6) can then be rewritten as

d∑
i=1

(Ei1 − 2Oi1 +
O2

i1

Ei1
) + (Ei2 − 2Oi2 +

O2
i2

Ei2
)

− (Ei1 −
αnk−1ni

N
− 2O′

i1 +
(O′

i1)
2

E′
i1

)− (Ei2 +
αnk−1ni

N
− 2O′

i2 +
(O′

i2)
2

E′
i2

),

which reduces to

d∑
i=1

2(O′
i1 −Oi1 + O′

i2 −Oi2) +
O2

i1

Ei1
+

O2
i2

Ei2
− (O′

i1)
2

E′
i1

− (O′
i2)

2

E′
i2

. (7)

186 S. Nijssen and J.N. Kok

It is easy to see that
∑d

i=1 2(O′
i1 − Oi1 + O′

i2 − Oi2) = 0, as the O elements
only sum over all observations, and this number does not change. Therefore we
rewrite equation (7) to:

d∑
i=1

O2
i1

Ei1
+

O2
i2

Ei2
− (O′

i1)
2

E′
i1

− (O′
i2)

2

E′
i2

,

which reduces to:(
d∑

i=1

O2
i1

Ei1
+

O2
i2

Ei2
− O2

i1

E′
i1
− O2

i2

E′
i2

)
+

(αnk−1)2

E′
(k−1)1

−
(1− (1− α)2)n2

k−1

E′
(k−1)2

.

or, equivalently:

(
d∑

i=1

O2
i1

Ei1
− O2

i1

E′
i1

)
+

(
d∑

i=1

O2
i2

Ei2
− O2

i2

E′
i2

)
+

(αnk−1)2

E′
(k−1)1

+
α(α− 2)n2

k−1

E′
(k−1)2

. (8)

We first rewrite the first term:

d∑
i=1

O2
i1

Ei1
− O2

i1

E′
i1

=
k−1∑
i=1

α2n2
i N

α(n1 + · · ·+ nk−1)ni
− α2n2

i N

α(n1 + · · ·+ nk−2)ni

=
k−1∑
i=1

α2n2
i (n1 + · · ·+ nk−2)N − α2n2

i (n1 + · · ·+ nk−1)N
α(n1 + · · ·+ nk−1)(n1 + · · ·+ nk−2)ni

=
k−1∑
i=1

−αnink−1N

(n1 + · · ·+ nk−1)(n1 + · · ·+ nk−2)

=
−α

(∑k−1
i=1 ni

)
nk−1N

(n1 + · · ·+ nk−1)(n1 + · · ·+ nk−2)
=

−αnk−1N

n1 + · · ·+ nk−2

Furthermore, we have that:

(αnk−1)2

E′
(k−1)1

=
(αnk−1)2N

α(n1 + · · ·+ nk−2)nk−1
=

αnk−1N

n1 + · · ·+ nk−2
,

therefore two of the terms in equation (8) cancel out. Next we consider:

d∑
i=1

O2
i2

Ei2
− O2

i2

E′
i2

=
k−1∑
i=1

(1 − α)2n2
i N

(N − α(n1 + · · · + nk−1))ni
− (1 − α)2n2

i N

(N − α(n1 + · · · + nk−2))ni
+

d∑
i=k

n2
i N

(N − α(n1 + · · · + nk−1))ni
− n2

i N

(N − α(n1 + · · · + nk−2))ni

Multi-class Correlated Pattern Mining 187

=
k−1∑
i=1

α(1− α)2niNnk−1

(N − α(n1 + · · ·+ nk−1))(N − α(n1 + · · ·+ nk−2))
+

d∑
i=k

αniNnk−1

(N − α(n1 + · · ·+ nk−1))(N − α(n1 + · · ·+ nk−2))

=
α(

∑k−1
i=1 (1− α)2ni +

∑d
i=k ni)Nnk−1

(N − α(n1 + · · ·+ nk−1))(N − α(n1 + · · ·+ nk−2))

Summing the remaining terms we have that:

(
d∑

i=1

O2
i2

Ei2
− O2

i2

E′
i2

)
+

α(α − 2)n2
k−1

E′
(k−1)2

=

α(
∑k−1

i=1 (1 − α)2ni +
∑d

i=k ni)Nnk−1 + α(α − 2)nk−1N(N − α(n1 + · · · + nk−1))
(N − α(n1 + · · · + nk−1))(N − α(n1 + · · · + nk−2))

.

This simplifies to

α(α− 1)N2nk−1

(N − α(n1 + · · ·+ nk−1))(N − α(n1 + · · ·+ nk−2))
,

which is the final rewritten term that we were searching. Clearly, for 0 ≤ α ≤ 1
this term is negative, and χ2 measure is therefore suitable. �

Shaping SQL-Based Frequent
Pattern Mining Algorithms�

Csaba István Sidló1 and András Lukács2

1 Eötvös Loránd University, Faculty of Informatics,
Pázmány Péter sétány 1/c, 1117 Budapest, Hungary

scs@elte.hu
2 Computer and Automation Research Institute,

Hungarian Academy of Sciences, Kende u. 13-17., 1111 Budapest, Hungary
alukacs@sztaki.hu

http://informatika.ilab.sztaki.hu/websearch/

Abstract. Integration of data mining and database management sys-
tems could significantly ease the process of knowledge discovery in large
databases. We consider implementations of frequent itemset mining algo-
rithms, in particular pattern-growth algorithms similar to the top-down
FP-growth variations, tightly coupled to relational database manage-
ment systems. Our implementations remain within the confines of the
conventional relational database facilities like tables, indices, and SQL
operations. We compare our algorithm to the most promising previously
proposed SQL-based FIM algorithm. Experiments show that our method
performs better in many cases, but still has severe limitations compared
to the traditional stand-alone pattern-growth method implementations.
We identify the bottlenecks of our SQL-based pattern-growth methods
and investigate the applicability of tightly coupled algorithms in practice.

1 Introduction

Frequent itemset mining (FIM) is a central exercise of data mining. FIM is
a base to solve several further tasks like association rule, sequential and other
frequent pattern mining. Although algorithms for FIM were studied exhaustively
(see e.g. [1]), much fewer results and solutions are known about FIM algorithms
implemented in and for relational database management systems. On the other
hand the demand for integration of data mining tools into the existing database
management systems is tangible. An obvious next step solution is the extension
of the existing database query languages with new functions supporting FIM
algorithms.

� Research was partially supported from the grant Data Riddle NKFP-2/0017/2002
(Ministry of Education, Hungary). The research of the first author was partially sup-
ported by Inter-University Telecommunication Center (ETIK, http://www.etik.hu).
The research of the second author was partially supported by Hungarian Scientific
Research Fund (OTKA) grant T042706.

F. Bonchi and J.-F. Boulicaut (Eds.): KDID 2005, LNCS 3933, pp. 188–201, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Shaping SQL-Based Frequent Pattern Mining Algorithms 189

Comparing the SQL-based implementations to the stand-alone FIM algo-
rithms one can notice that the second class contains the very well performing
pattern-growth algorithms [10, 19], while the idea of pattern-growth is poorly
represented among the available SQL-based FIM algorithms [25]. The main
proposal of this paper is to eliminate this flaw by suggesting a new pattern-
growth FIM algorithm tightly coupled to relational database management sys-
tems. Therefore we examine SQL-based FP-growth algorithms in a performance
perspective, that is whether they are usable in practice. The main result is the
efficient implementation of the sophisticated FP-growth algorithm. We expect
that our algorithms do the data processing inside the database. We identify the
bottlenecks of the algorithms in order to determine the promising directions for
development of data mining enabled database systems.

2 Integrating Data Mining and Databases, Related Work

Data mining addresses extraction of interesting knowledge from large databases.
However, this complements the goals of the data warehouse and on-line analytical
processing technologies, the chasm between the existing data mining and the
database world is rather wide. Most data mining solutions include fully database-
independent applications for the data mining tasks. We belive that coupling data
mining with relational databases would remarkably improve the efficiency in the
knowledge discovery process and simplify the construction of decision support
systems.

Inductive databases [12, 7] are databases that integrate data with knowledge.
The main goal of an inductive database is to allow the user not only to query the
data that resides in the database, but also to query and mine generalizations,
patterns of interest. The knowledge discovery process should be supported by an
integrated framework, the user should be allowed to perform different operations
on both data and patterns. The interaction takes place through inductive query
languages supporting data mining, which are often extensions of SQL. A good
comparison between languages supporting descriptive rule mining can be found
in [6]. Other directions allowing data mining-like queries are data mining query
interfaces and APIs [18]. From the analyst point of view the usability of OLAP
(on-line analytical processing) systems could also be significantly increased by
the integration of data mining methods. This viewpoint of inductive databases
is the on-line analytical mining (OLAM) [9].

Despite the probable usefulness we are still far away from a general theory
and practical realizations of full value of inductive databases, however, there are
promising partial results, and also RDBMS vendors try to integrate more and
more knowledge discovery support in their systems, turning them into decision
support platforms (see [14] and [15]).

The accomplishment of integration from the architectural point of view is still
an open question. In case of the fully separated systems, the required data is
read from the DBMS, the mining is performed on a file system-cached version,
and the results are written back to the database. The advantage here is the

190 Cs.I. Sidló and A. Lukács

possibility to use special memory structures and buffer strategies. The loosely
coupled architectures access the data through some standard interface too, but
push parts of the data mining tasks in the DBMS. The tightly coupled variants
use only facilities of the DBMS. A tightly coupled architecture is introduced
in [16].

Nonetheless, SQL-based tightly coupled algorithms are considered bearing
significantly inferior in terms of running times compared to stand-alone imple-
mentations, there exist advantages of tightly coupled data mining. Since data
appears mostly in data warehouses and other databases in practice, in the case
of tightly coupled data mining applications no additional data mining system
is needed. Databases have already solved the problem of efficient and safe stor-
ing and querying large datasets reliably. Therefore, DBMSs can facilitate data
mining to become an online, robust, scalable and concurrent process by comple-
menting the existing querying and analytical functions. A relevant example is
that of the caching problem. When data structures are too large to fit in memory,
we can try to entrust caching to the database engine.

The first attempt to the particular problem of integrated frequent itemset
mining was the SETM algorithm [11], expressed as SQL queries working on re-
lational tables. The Apriori algorithm [2] opened up new prospects for FIM. The
database-coupled variations of the Apriori algorithm were carefully examined
in [22]. The SQL-92 based implementations were too slow, but the SQL im-
plementations enhanced with object-relational extensions (SQL-OR) performed
acceptable. The so-called Cache-Mine implementation had the best overall per-
formance, where the database-independent mining algorithm cached the rele-
vant data in a local disk cache. The optimization of the key operation, the join
queries was studied in [26], and a new SQL-92-based method, Set-oriented Apri-
ori was introduced. Further performance evaluations on commercial RDBMS
can be found in [28], evaluations of the SQL-OR option in [17]. An interest-
ing SQL-92 algorithm based on universal quantification is discussed in [20]
and [21].

Since the introduction of the FP-growth method [10], a few attempts were
made to implement pattern-growth methods inside the RDBMS [25]. [3] presents
a novel, FP-tree-based indexing method, which provides a complete and compact
representation of the dataset for frequent itemset mining, and collaborates effi-
ciently with the relational database kernel. [8] deals with database-independent
frequent itemset mining from secondary memory.

FIM is investigated most intensively among the problems of data mining in
DBMS, but other classical data mining tasks are also studied, e.g. building and
applying decision tree classifiers [23, 5].

3 Association Rule and Frequent Itemset Mining

Several data mining tasks, including identification of joint distribution, compres-
sion, and fast counting can be reduced to association rules mining.

Let us consider the set of items I = {item1, item2, . . . itemm}. A setsystem
D ⊆ P (I) of I is called database and the elements of D are the baskets of items.

Shaping SQL-Based Frequent Pattern Mining Algorithms 191

The support of an itemset A ⊂ I is the number of baskets that have all of the
items from A. We call an itemset A frequent if A has a support greater than
some fix threshold s. Finding all frequent itemsets is the goal of the frequent
itemset mining (FIM).

Association rules are binary relations between itemsets. An association rule
A → B is an ordered pair of two disjoint itemset, here A and B. The support
of the rule A → B is the support of A ∪ B, the number of baskets containing
A ∪ B. The confidence of this rule is defined by the ratio of the support of the
set A ∪ B to the support of the set A. The aim of association rule mining is to
find all the rules that have a support and confidence greater than or equal to
some previously given s and c, respectively. Practically association rule mining
can be derived to the frequent itemsets mining problem.

To solve the FIM problem one can observe that frequent itemsets satisfy the
antimonotonicity property (or Apriori principle), for a subset A of itemset B the
support of A is greater or equal to the support of B. This property is the base of
the multi-pass algorithm called Apriori [2]. Further algorithms solving the FIM
problem are based on pattern-growth [10, 19].

4 Apriori-Based Methods

The Apriori algorithm iterates two basic phases to find frequent itemsets. In the
nth iteration step it generates at first candidates for frequent itemsets having size
n, which can be done utilizing the Apriori principle: the nth candidate set Cn can
be produced from the (n − 1)th set of frequent itemsets Fn−1. Next it tests the
candidate set against the database, by counting support values for the candidates.
The process iterates until the candidate itemset becomes empty. We don not have
to materialize C1, all items in the database are candidates, and in all other cases
we materialize Cn and Fn. Next we discuss the SQL-92 methods briefly.

The SQL implementations differ in data representation. Two basic varia-
tions to represent these sets in relations are the horizontal approach, where
Cn and Fn have the schema (item1, item2, ...itemn), and the vertical approach
with (set id, item) schema. The horizontal approach have the disadvantage that
the item count is limited by the possible count of table attributes, but can
be beneficial in the performance view. The input database table has always
(transaction id, item) schema, because of the unknown number of items per
transaction, and fits mostly to the star schema in relational data warehouses.

The implementations also differ in the SQL commands for candidate genera-
tion and support counting. Since the support counting phase is the most time
consuming part of the computing, most algorithms share the candidate gen-
eration operation, using a k-way join to generate Cn from Fn−1. The support
counting commands like K-Way-Join, Subquery and 2-Way-Join utilize join op-
erations, or rely on group by computations like Two-Group-Bys [22]. The basic
K-Way-Join support counting joins the data table n times in the nth step:

insert into Fn select item1 ... itemn count(∗)
from Cn, Fn−1 as I1, ... Fn−1 as In

192 Cs.I. Sidló and A. Lukács

where I1.item < Cn.item1 and ... and In.item < Cn.itemn and
I1.tid = I2.tid and ... and In−1.tid = In.tid

group by item1, ... itemn

having count(∗) ≥ minsup.

Subquery is an optimization of the K-Way-Join, which makes use of the com-
mon prefixes between the itemsets in the candidate set. We developed different
versions of Subquery to apply the divide-and-conquer idea of [24]: if we divide
the database into distinct partitions, then an itemset can only be frequent, if it
is frequent on at least one partition. It is possible therefore to partition the input
table, find the frequent itemsets over the partitions, then test all partition-wise
valid frequent itemsets over the whole input table. Unfortunately, as depicted on
Figure 3, the execution times against the size of the input table don not allow
to efficiently apply the partition trick. However, the method could be used to
mine data stored on multiple databases, as shown in [13].

5 Pattern-Growth Methods

Pattern-growth methods, first published in [10], represent the database in a
compact data structure, called Frequent-Pattern-tree (FP-tree) to avoid repeated
database scans and large candidate sets. The FP-tree stores items having greater
support than the minimum support in a tree structure. Given an ordering of the
items, transactions are represented as paths from the root node, sharing the
same upper path if their first few frequent items are the same. The FP-tree is
searched recursively to find the frequent itemsets with the FP-growth method.

Figure 1 shows an FP-tree built for an example database with minimum sup-
port 2. Each node is labelled by an item, which has a count value and a sidelink
to its siblings. The count value refers to the support of the itemset represented
by the path from the root to the given node. An additional header table stores
the initial sidelinks and the total supports for the items.

Fig. 1. FP-tree for a given database, built with minimum support 2

5.1 Constructing the FP-tree

A table having the schema

node : (node id, parent id, item, count, sidelink)

Shaping SQL-Based Frequent Pattern Mining Algorithms 193

represents the FP-tree in a natural fashion. In a particular state of the processing
of the tree the attribute sidelink shows, whether a node is part of the processed
subtree or not (Y /N). On the first level of the tree attributes parent id are null.
An alternative approach can be found in [25], where instead of a reference for
the parents, a not fully discussed path type is used as attribute for all nodes.

The FP-tree can be built by reading the database once, inserting a new path
into the tree per transaction if the set of its frequent items has not been rep-
resented yet, or else increasing the values of counts. This method expressed as
SQL queries is not efficient enough, because of the high cost of the node table
accesses individually for all items. Instead of that, we build the FP-tree level by
level, inserting all nodes on a particular level of the tree by one SQL query.

Our first version uses the subset of the original input table containing only
parts of transactions formed by frequent items, and a table containing ele-
ments (node id, item), representing the prefix we have processed. We delete
the processed rows from the filtered input table. We get the next item per trans-
action by a minimum search, and insert new rows in node. Assuming that input
table is tdb filtered : (tid, item), the prefix table is prefix : (tid, node id), and
node seq.nextval is used to generate the unique identifiers, the key step is:

insert into node
select node seq.nextval, min.minitem,

prefix.node id, count(min.tid)
from (select tid, min(item) minitem

from tdb filtered
group by tid) min, prefix

where min.tid = prefix.tid
group by min.item, prefix.node id.

Our second version uses an analytic function called dense rank to produce
a sorted and filtered version of the input table. We create groups according to
the tid attribute with the help of this function, and the items in the group are
ranked based on the given ordering (supposing that tdb:(tid, item) is the input
table):

select tid, item, dense rank() over (partition by tid order by item) rank
from tdb.

In this case the filtered input table is tdb filtered : (tid, item, rank). Building
node is similar to the previous version, but we eliminate the minimum search
and the deletion step by referring to all levels by the rank value.

Items in the input table are represented by identifiers. A natural ordering
is given for these identifiers, but that is not suitable for building the FP-tree.
Accordingly we use an additional table for items, in which they are assigned to
exactly one new identifier. The new identifiers are given so that their natural
ordering will be the same as the descending ordering of the original items based
on the support. This ordering promises an optimal size of the tree. This step
can be solved by a simple sorting query, and the results can be used initially for
filling up the header table described later.

194 Cs.I. Sidló and A. Lukács

5.2 FP-tree Evaluation

To avoid the combinatorial problem of evaluating the FP-tree, we use a method
similar to the top-down FP-growth described in [27], which finds all frequent
itemsets without materializing conditional subtrees. The core of the algorithm is
a recursive procedure utilizing SQL operations and some additional tables. The
header : (header id, item, count) table stores counting information for items
coming up in stages of the recursion, and the table also serves as a recursion
heap. Identifiers of the header table are analogous to the separate header ta-
bles in the original FP-growth concept. All those itemsets are considered in
a recursion step, which end up with a given item sequence x̄. An other table
header postfix : (header id, item) stores the postfixes of x̄ for the header iden-
tifiers. The mine procedure recursively produces all frequent itemsets above a
given minimal support value minsup. The procedure starts with mine(0) af-
ter the FP-tree creation phase, when the table header is already filled up with
frequent items and their counts, having the initial header id 0.

Procedure mine(h id)
1 for h rec in (select header id, item, count from header

where header id = h id)
2 if h rec.count ≥ minsup then
3 output long pattern: (h rec.item, postfix) using header postfix ;
4 new header ← generate new header id ;
5 for each n node from node located on paths

upwards from h rec.item-s, having sidelink = Y
6 n.count← sum of counts of leaves ;
7 n.sidelink ← Y ;
8 if (new header, n.item) exists in header then
9 add n.count to header row identified by (new header, n.item)
10 else insert (new header, n.item, n.count) into header;
11 for each n node from node not located on paths upwards from

h rec.item-s, having sidelink = Y and item < h rec.item
12 n.sidelink ← N ;
13 mine(new header) ;

We implemented the steps of the above algorithms as SQL queries, with the
help of auxiliary tables. Frequent sets are put in the table result : (set id, item),
and absolute support values of frequent itemsets in the table result support:
(set id, support).

Application of the top-down FP-growth method was motivated by the main
observation discussed in the following. If we process the tree in a top-down
fashion, then the counts of the nodes above the actual leaf are no longer needed,
therefore they can be reused for counting. We use further temporary tables for
the purpose of climbing up the paths and setting sidelinks and counts (rows
5-12). Table path : (node id, count) stores the nodes found on the paths with
the actual count value. We climb up the paths level by level, accumulating the
counts of the leaves. The required information (original node, actual node, count

Shaping SQL-Based Frequent Pattern Mining Algorithms 195

value of the original node) for these steps are stored in a subsequent auxiliary
table. This step can be also solved by the use of a recursive query (assuming the
syntax of Oracle):
select node id from node
start with node id = (actual node) connect by prior parent id = node id.

Processing the nodes on the paths leaf by leaf with the use of a recursive
query instead of processing level by level was found less effective in our tests.

5.3 Indices and Further Optimization

After implementing the first versions of the algorithm it became clear, that the
main cost arises from the node table accesses, especially from updates (steps 6, 7
and 12). These accesses refer to more and more node by the end of the processing,
when processed nodes are near to the leaves. We can optimize the updates, for ex-
ample updating only those sidelinks of the nodes which do not have the right value
yet, but after all without the use of indices these steps require full scans of the table
node, which typically costs lot of block reads and writes.

The values of the attributes node id, parent id and item do not change af-
ter building the node table. Therefore it is profitable using standard B-tree
indices on them, like (item, node id) index for searching node id-s by item, or
(node id, parent id) to find parent nodes efficiently. The values of sidelink and
count are changed frequently. We do not want to access the table by the at-
tribute count, but using some index on the attribute sidelink can be profitable.
We can use regular or bitmap indices since the attribute sidelink has only two
distinct attributes. We tested both the regular and bitmap versions for sidelink.
Bitmap indices were found good for selecting by attributes of low cardinality,
and we found the access times were really lower in the tests. Hereafter we refer
to the indexed version of the above described algorithm as FP-TDG.

We implemented several alternatives of FP-TDG. We experienced, that de-
normalizing the node table is beneficial: the database schema

node : (node id, parent id, item)
sidelink : (node id)

count : (node id, count)

enables us to manage the frequently changed information apart from the per-
manent tree-structure information. In this case we store the binary ”header”
information as a set of node id. The ”count” values for nodes are stored in a
smaller and separate table. Instead of building separate indices on these two
tables we store them as B-trees with the help of the so-called ”index-organized
table” facility of the database server. We refer this version as FP-TDG2.

6 Experiments

Our experiments were performed on Oracle9i Release 2 DBMS, installed on a
PC server with a 3 GHz Intel Pentium processor, 2 GB memory, RAID 5 with

196 Cs.I. Sidló and A. Lukács

IDE disks and Debian Linux operating system. Memory usage of the database
server was limited to 1 GB, because of other background services on the server.
Redo logging was reduced for all tables, and parallel processing functions of the
database were not enabled.

Our algorithms was implemented using PL/SQL procedures. This method
could be exchanged to any other programming environment, in which we can
connect to the database server through a standard database API. The algo-
rithms can be executed on an arbitrary client, because the main part of the
data processing remains inside the database server. The client generates the
adequagte SQL statements only, which requires only little computing and net-
working capacity.

We used the public FIMI datasets [1] for our tests. Table 1 shows the properties
of the six selected datasets.

Table 1. Dataset properties

Dataset Num. of records Num. of Num. of items Avg. num. of items
(K) transactions per transaction

ACCIDENTS 11,500 340,183 468 33.8
BMS-WebView-1 149.6 59,602 497 2.5
BMS-WebView-2 358.3 77,512 3,340 4.6

KOSARAK 8,019 990,002 41,270 8.1
RETAIL 908.6 88,162 16,469 10.3

T10I4D100K 1010 100,000 870 10.1

We have chosen the Subquery method to compare our algorithms to, because -
as suggested in [22] - Subquery had the best overall performance (although this is
in fact opposed to the result in [21], where K-Way-Join is superior in this category).
We implemented our version with the so-called second-pass optimization: we don
not materialize the candidates of size two, it is replaced by a 2-way join between
frequent item tables of size one.

The other algorithm we have chosen for comparison is the algorithm nonordfp
[1] implemented in C++, as a fully database-independent application. The al-
gorithm nonordfp handles an FP-tree-like structure, and the algorithm can ef-
ficiently evaluate the tree without materializing subtrees. We made up a tiny
cache-mine system, where nonordfp runs on the same server as the database,
but connects to the database only to read out the input data and to write back
the results through standard JDBC interface. The algorithm nonordfp caches
the data in the filesystem for processing. Its memory usage was not limited. We
refer hereinafter this implementation as NFP-CACHE.

The main part of the total execution times of nonordfp came from reading
and writing the database. The response time goes up only below low minimum
support values, when the result set becomes large. The algorithm nonordfp out-
performs the SQL-based methods for low minimum support, however as being
in-memory algorithm, the input size is limited by the available memory.

Shaping SQL-Based Frequent Pattern Mining Algorithms 197

1

10

100

1000

10000

T10
I4

D10
0K

 -
1%

BM
S-W

eb
View

-2
 -

0.
1%

RETAIL
 -

0%

ACCID
ENTS -

90
%

C
on

st
ru

ct
io

n
T

im
e

(s
ec

)

minimum search dense rank

Fig. 2. Constructing the FP-tree for some selected databases and minimum support
values

Figure 2 shows execution times of our two methods for FP-tree construction.
Figure 3 (left) shows execution times on different sized samples of the RETAIL
database with the minimum support value of 0.5 %. Figures 3 (right), 4, 5 and
6 (left) compare the total execution times of our algorithms.

FP-TDG and FP-TDG2 mostly outperform Subquery, but in case of the gen-
erated dataset T10I4D100K they do not perform well. This dataset is rather
sparse, and most FP-growth methods work less efficiently on sparse datasets.
This can be seen here as well. The FP-tree becomes too large, it does not com-
press the database efficiently, and this causes a leap in the aggregated node-access
times. On the other hand the sparsity of the database is advantageous for the
join-based Apriori methods, when the size of the candidate sets shrink fast.

RETAIL samples - 0.5 % minimum support

0

100

200

300

400

500

10 20 30 40 50 60 70 80 90
Input Size (transaction count × 103)

T
ot

al
 T

im
e

(s
ec

)

SUBQUERY
NFP-CACHE
FP-TDG
FP-TDG2

RETAIL

10

100

1000

10000

100000

00.511.52
Minimum Support (%)

T
ot

al
 T

im
e

(s
ec

)

SUBQUERY
NFP-CACHE
FP-TDG
FP-TDG2

Fig. 3. Execution times on the RETAIL dataset

198 Cs.I. Sidló and A. Lukács

T10I4D100K

1

10

100

1000

10000

012345
Minimum Support (%)

T
ot

al
 T

im
e

(s
ec

)

SUBQUERY NFP-CACHE

FP-TDG FP-TDG2

ACCIDENTS

10

100

1000

10000

100000

30507090
Minimum Support (%)

T
ot

al
 T

im
e

(s
ec

)

SUBQUERY NFP-CACHE
FP-TDG FP-TDG2

Fig. 4. Execution times on the T10I4D100K and ACCIDENTS datasets

BMS-WebView-1

1

10

100

1000

10000

0.010.11
Minimum Support (%)

T
ot

al
 T

im
e

(s
ec

)

SUBQUERY

NFP-CACHE

FP-TDG

FP-TDG2

BMS-WebView-2

1

10

100

1000

10000

0.10.20.30.40.50.60.70.80.91
Minimum Support (%)

T
ot

al
 T

im
e

(s
ec

)

SUBQUERY
NFP-CACHE
FP-TDG
FP-TDG2

Fig. 5. Execution times on the BMS-WebView datasets

KOSARAK

100

1000

10000

100000

0.511.522.53
Minimum Support (%)

T
ot

al
 T

im
e

(s
ec

)

SUBQUERY NFP-CACHE

FP-TDG FP-TDG2

Weblog

10

100

1000

10000

00.511.52

Minimum Support (%)

T
ot

al
 T

im
e

(s
ec

)

SUBQUERY

FP-TDG2

Fig. 6. Execution times on the KOSARAK dataset, and on real-life weblog data

Shaping SQL-Based Frequent Pattern Mining Algorithms 199

We have also tested Subquery and FP-TDG2 in a real-life environment, over
logs of the largest Hungarian web portal (www.origo.hu). The site produces
7,000,000 page hits on a typical workday, which is processed by an experimental
weblog mining architecture (see [4] for details). The preprocessed data is stored
in an Oracle 9i database component of the architecture. The task is identifying
set of pages accessed together by a large fraction of the users on a given day.
Execution times of the algorithms on a typical workday can be seen on Figure 6
(right side), where 767,663 identified user accessed 57,911 different pages during
the day, which resulted in 2,395,146 records of hits. The average number of
downloaded pages per user was 3.12.

In the weblog mining architecture the results can be analysed by a statististical
analysis framework. It canbe reachedthroughawebserverwithdynamicwebpages,
connected to the database. Users can discover frequent sets of pages by extending
the frequent sets one-by-one, starting with an empty, or with a directly given set of
pages.The possible extensions can be choosen froma toplist. This simple method is
suitable in our case, where we have 1 to 47 thousand frequent sets with a maximum
size of 13 for the different minimum supports measured and appeared on Figure 6.

In this real-life application of the SQL-based FP-TDG2 we eliminated the
need for a separate FIM system producing duplicated data. Frequent sets are
produced by only the use of the common database facilities. The execution times
are acceptable, they are comparable to the computation times of some complex
statistical aggregations in the database.

Implementations of the algorithms and the used sample datasets can be down-
loaded from http://scs.web.elte.hu/sqlfim/.

7 Conclusion

In this paper an FP-tree based algorithm for frequent itemset mining is proposed.
Variants for both constructing and evaluating the FP-tree is discussed. Our best
algorithm performed well in its category, but it has severe limitations compared
to stand-alone FIM algorithms. We found that the common buffer management
and indexing technics do not provide enough support for the task of efficient
storing and accessing the FP-tree by relations and relational operators. However,
practical application of our algorithm seems possible, especially for high support
thresholds, where the result set still has a manageable size.

References

1. Frequent itemset mining implementations repository. http://fimi.cs.helsinki.fi/.
2. R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large

databases. In VLDB ’94: Proceedings of the 20th International Conference on
Very Large Data Bases, pages 487–499, San Francisco, CA, USA, 1994. Morgan
Kaufmann Publishers Inc.

3. E. Baralis, T. Cerquitelli, and S. Chiusano. Index support for frequent itemset
mining in a relational DBMS. In ICDE ’05: Proceedings of the 21st International
Conference on Data Engineering (ICDE’05), pages 754–765. IEEE Computer So-
ciety, 2005.

200 Cs.I. Sidló and A. Lukács

4. A. A. Benczúr, K. Csalogány, K. Hum, A. Lukács, B. Rácz, C. Sidló, and M. Uher.
Architecture for mining massive web logs with experiments. In Proceedings of the
HUBUSKA Open Workshop on Generic Issues of Knowledge Technologies, 2005.

5. F. Bentayeb and J. Darmont. Decision tree modeling with relational views. In
ISMIS ’02: Proceedings of the 13th International Symposium on Foundations of
Intelligent Systems, pages 423–431. Springer-Verlag, 2002.

6. M. Botta, J.-F. Boulicaut, C. Masson, and R. Meo. Query languages supporting
descriptive rule mining: A comparative study. In Database Support for Data Mining
Applications, volume 2682/2004 of Lecture Notes in Computer Science, pages 24–
51. Springer-Verlag, 2004.

7. J.-F. Boulicaut, M. Klemettinen, and H. Mannila. Modeling KDD processes within
the inductive database framework. In DaWaK ’99: Proceedings of the First Interna-
tional Conference on Data Warehousing and Knowledge Discovery, pages 293–302.
Springer-Verlag, 1999.

8. G. Grahne and J. Zhu. Mining frequent itemsets from secondary memory. In ICDM
’04: Proceedings of the Fourth IEEE International Conference on Data Mining
(ICDM’04), pages 91–98, Washington, DC, USA, 2004. IEEE Computer Society.

9. J. Han. Towards on-line analytical mining in large databases. SIGMOD Rec.,
27(1):97–107, 1998.

10. J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In Proceedings of the 2000 ACM SIGMOD international conference on Manage-
ment of data, pages 1–12. ACM Press, 2000.

11. M. Houtsma and A. Swami. Set-oriented data mining in relational databases. Data
Knowl. Eng., 17(3):245–262, 1995.

12. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Commun. ACM, 39(11):58–64, 1996.

13. H. Kona and S. Chakravarthy. Partitioned approach to association rule mining
over multiple databases. pages 320–330, 2004.

14. W. Li and A. Mozes. Computing frequent itemsets inside Oracle 10g. In VLDB’04,
pages 1253–1256, 2004.

15. J. MacLennan. SQL Server 2005: Unearth the new data mining features of analysis
services 2005. MSDN Magazine, 19(9), 2004.

16. R. Meo, G. Psaila, and S. Ceri. A tightly-coupled architecture for data mining. In
ICDE ’98: Proceedings of the Fourteenth International Conference on Data Engi-
neering, pages 316–323, Washington, DC, USA, 1998. IEEE Computer Society.

17. P. Mishra and S. Chakravarthy. Performance evaluation of SQL-OR variants for
association rule mining. Lecture Notes in Computer Science, 2737/2003:288–298,
2003.

18. A. Netz, S. Chaudhuri, U. M. Fayyad, and J. Bernhardt. Integrating data mining
with SQL databases: OLE DB for data mining. In Proceedings of the 17th Interna-
tional Conference on Data Engineering, pages 379–387. IEEE Computer Society,
2001.

19. J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang. H-Mine: Hyper-structure
mining of frequent patterns in large databases. In Proceedings of the 2001 IEEE
International Conference on Data Mining, pages 441–448. IEEE Computer Society,
2001.

20. R. Rantzau. Processing frequent itemset discovery queries by division and set
containment join operators. In Proceedings of the 8th ACM SIGMOD workshop on
Research issues in data mining and knowledge discovery, pages 20–27. ACM Press,
2003.

Shaping SQL-Based Frequent Pattern Mining Algorithms 201

21. R. Rantzau. Frequent itemset discovery with SQL using universal quantification.
In Database Support for Data Mining Applications, pages 194–213, 2004.

22. S. Sarawagi, S. Thomas, and R. Agrawal. Integrating association rule mining
with relational database systems: alternatives and implications. In SIGMOD ’98:
Proceedings of the 1998 ACM SIGMOD international conference on Management
of data, pages 343–354. ACM Press, 1998.

23. K.-U. Sattler and O. Dunemann. SQL database primitives for decision tree classi-
fiers. In CIKM ’01: Proceedings of the tenth international conference on Informa-
tion and knowledge management, pages 379–386. ACM Press, 2001.

24. A. Savasere, E. Omiecinski, and S. B. Navathe. An efficient algorithm for mining
association rules in large databases. In Proceedings of the 21th International Con-
ference on Very Large Data Bases, pages 432–444. Morgan Kaufmann Publishers
Inc., 1995.

25. X. Shang, K.-U. Sattler, and I. Geist. SQL based frequent pattern mining with
fp-growth. In INAP/WLP, pages 32–46, 2004.

26. S. Thomas and S. Chakravarthy. Performance evaluation and optimization of join
queries for association rule mining. In Proceedings of the First International Con-
ference on Data Warehousing and Knowledge Discovery, pages 241–250. Springer-
Verlag, 1999.

27. K. Wang, L. Tang, J. Han, and J. Liu. Top down FP-growth for association
rule mining. In PAKDD ’02: Proceedings of the 6th Pacific-Asia Conference on
Advances in Knowledge Discovery and Data Mining, pages 334–340, London, UK,
2002. Springer-Verlag.

28. T. Yoshizawa, I. Pramudiono, and M. Kitsuregawa. SQL based association rule
mining using commercial RDBMS (IBM DB2 UBD EEE). In Proceedings of the
Second International Conference on Data Warehousing and Knowledge Discovery,
pages 301–306. Springer-Verlag, 2000.

Exploiting Virtual Patterns for Automatically
Pruning the Search Space

Arnaud Soulet and Bruno Crémilleux

GREYC, CNRS - UMR 6072,
Université de Caen, Campus Côte de Nacre,

F-14032 Caen Cédex, France
{Forename.Surname}@info.unicaen.fr

Abstract. A lot of works address the mining of patterns under con-
straints. The search space is reduced by taking advantage of pruning
conditions on patterns, typically by using anti-monotone and monotone
properties. In this paper, we introduce two virtual patterns in order to
automatically deduce pruning conditions from any constraint coming
from the primitive-based framework which gathers a large set of varied
constraints. These virtual patterns enable us to provide negative and
positive pruning conditions according to the generalization and the spe-
cialization of patterns. We show that these pruning conditions are mono-
tone or anti-monotone and can be pushed into usual constraint mining
algorithms. Experiments carried on several contexts show that our pro-
posals improve the mining.

Keywords: constraint-basedmining, virtual patterns, pruning conditions.

1 Introduction

The constraint-based pattern discovery is a significant field of the Knowledge
Discovery in Databases (KDD). A constraint expresses the viewpoint of the an-
alyst and guarantees the interest of the extracted patterns. The soundness and
completeness of the extraction ensure that the collection of patterns is respec-
tively correct and exhaustive. Constraint-based mining remains a challenge due
to the huge size of the search space which has to be explored. This task is hard
to automate because there is a broad spectrum of constraints requiring their
own pruning strategies to prune the search space.

In practice, most of the algorithms take advantage of pruning conditions
depending on the constraint in order to reduce the search space. Typically,
whenever a pattern satisfies a pruning condition, the algorithm safely discards
all its subsets or supersets. Introduced in [1], the anti-monotonicity offers the
outstandingly useful pruning condition according to the specialization of pat-
terns and we have efficient algorithms to extract them. There is also a dual
kind of pruning condition according to the generalization of patterns with the
monotone constraints [19]. We will see in Section 2 that such pruning condi-
tions are called negative pruning conditions (i.e., the pruned patterns do not

F. Bonchi and J.-F. Boulicaut (Eds.): KDID 2005, LNCS 3933, pp. 202–221, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Exploiting Virtual Patterns for Automatically Pruning the Search Space 203

satisfy the constraint). Contrary to the negative pruning conditions, other ap-
proaches [16] benefit from a positive pruning condition (i.e., the pruned patterns
satisfy the constraint). Combined with the generalization or specialization of
patterns, we get four pruning conditions (i.e., negative/positive according to the
generalization/specialization) and numerous efficient algorithms use them indi-
vidually [1, 19] or simultaneously [7, 9]. Unfortunately, most of constraints are
neither monotone nor anti-monotone and pruning conditions are not easy to in-
fer. To the best of our knowledge, there is no work which makes the most of the
pruning conditions for any constraint. This observation motivates us to auto-
matically deduce these pruning conditions for a lot of varied constraints and, in
this paper, we focus on constraints defined by the primitive-based framework [24]
(such constraints are called primitive-based constraints). This framework enables
us to define in a flexible way a large set of varied constraints such as monotone,
anti-monotone, convertible and tougher ones [25].

The key idea of this paper is to use two virtual patterns in order to automatically
achieve the pruning conditions from any primitive-based constraint. By focussing
on the patterns present at least once in the data, the virtual patterns synthesize
the specificities of the data mining context to get powerful pruning conditions. The
bottom (resp. top) virtual pattern enables to consider all the subsets (resp. the su-
persets) of a given pattern. These virtual patterns are only linked to the data (they
do not change if the constraint varies). The use of the primitive-based framework is
important because its relies on monotone primitives whose properties are needed
to automatically deduce the pruning conditions.

This paper proposes two main contributions. First, we introduce the concept of
virtual patterns and detail the definition of the bottom and top virtual patterns.
They are elegant tricks to adequately manipulate constraints by taking into ac-
count the specificities of the mining context. Furthermore, we show that they stem
from the minimal and the maximal patterns present in the dataset, which enables
an efficient computation of these patterns. Second, by exploiting these virtual pat-
terns in conjunction with the primitive-based framework, we provide negative and
positive pruning conditions according to the generalization and the specialization
for the primitive-based constraints. These efficient pruning conditions, which pre-
serve the soundness and the completeness, are automatically obtained. We prove
that they verify suitable properties of monotonicity. Thereby, they can easily be
pushed by usual algorithms. Furthermore, performance study shows that they im-
prove the mining task (with different mining algorithms and several constraints).
In many cases, they allow us to mine constraints intractable until now.

This paper is organized in the following way. Section 2 introduces the basic
definitions and related work. It highlights the difficulties of finding pruning con-
ditions and the main principles of our approach. Section 3 depicts the primitive-
based framework and its properties which are necessary for understanding the
rest of the paper. Section 4 defines the notion of virtual patterns and links it
to the primitive-based framework. Section 5 indicates how to find pruning con-
ditions by using virtual patterns. Finally, Section 6 shows the practical uses of
these pruning conditions and experiments them.

204 A. Soulet and B. Crémilleux

2 Preliminaries

We start by describing the task of mining all patterns satisfying a constraint.
Then, we define the notion of pruning conditions and we give the key ideas of
our paper.

2.1 Notations and Definitions

A transactional dataset D is a triplet (A,O, R) where A is a set of attributes,
O is a set of objects and R ⊆ A×O is a binary relation between the attributes
and the objects. (a, o) ∈ R expresses that the object o contains the attribute a
(see for instance, the dataset D in Table 1 where A, . . . , F denote the attributes
and o1, . . . , o7 denote the objects). Finally, a mining context is a transactional
dataset completed with additional information (e.g., a table of attribute values,
see Table 1).

Table 1. Example of a mining context (a transactional dataset D and a table of values)

D
Objects Attributes

o1 A B E F
o2 A E
o3 A B C D
o4 A B C
o5 D E
o6 C F
o7 A E

Attribute A B C D E F

val 55 30 70 10 30 15

The aim of constraint-based mining is to extract all the patterns1 present in
D and satisfying a predicate q (also called query or constraint). A pattern X is
present in D whenever it is at least included in one object of D. Let us consider an
example by assuming that we are interested in all patterns having an area greater
than 6: these patterns can be mined with the constraint count(X)×length(X) ≥
6 (where count(X) denotes the number of objects in D that contain the pattern
X and length(X) is the cardinality of X).

The property of monotonicity has a great role in constraint-based mining to
efficiently prune the search space. A constraint q is anti-monotone (resp. mono-
tone) with respect to the specialization of the patterns2 iff whenever X ⊆ Y
then q(Y) ⇒ q(X) (resp. q(X) ⇒ q(Y)). The minimal frequency constraint (i.e.,
count(X) ≥ γ where γ is a threshold) is probably the most usual among the
anti-monotone constraints. Unfortunately, like the area constraint, a lot of con-
straints do not satisfy the monotonicity properties: this one is neither monotone
1 This paper only focuses on non-empty itemsets (i.e., a pattern is a subset of A).

Nevertheless, by using an other partially ordered language than LA, all the defini-
tions can be extended to other kinds of patterns like graphs, sequences, trees and so
on.

2 A specialization relation [20] is a partial order on the patterns in LA.

Exploiting Virtual Patterns for Automatically Pruning the Search Space 205

(area(ABC) ≥ 6 but area(ABCD) < 6), nor anti-monotone (area(BC) < 6
but area(ABC) ≥ 6) and there is no trivial pruning condition.

2.2 Pruning Conditions

A pruning condition is a property which enables the algorithms to reduce the
search space. Most of the algorithms (based on breadth-first search [1, 19], depth-
first search [5] or particular data structures [13]) use them to eliminate candidate
patterns during the generation step. The pruning conditions are also used to per-
form data reductions [6]. Moreover, other kinds of patterns (like sequences [2],
graph [17] and so on) are extracted by benefiting from the principle of the prun-
ing conditions. When a pattern satisfies a pruning condition, the result of the
constraint is known for all its generalizations (i.e., subsets) or all its specializa-
tions (i.e, supersets). Then we can prune them. If the pruned patterns satisfy
the constraint, the pruning is called positive. If none of the pruned patterns
satisfies the constraint, the pruning is named negative. Combined with the gen-
eralization or specialization of patterns, we get four pruning conditions (i.e.,
negative/positive w.r.t. the generalization/specialization). These pruning condi-
tions are extensively used in the literature as seen now.

The most common negative pruning conditions according to the specialization
stem from monotonicity [1, 19]. Once we know that a pattern does not satisfy
an anti-monotone constraint, any superset of this pattern does not satisfy the
constraint anymore. Dually, the monotone constraints provide negative pruning
conditions according to the generalization. Many algorithms rely on one of these
monotone prunings [1, 19]. There are also specific algorithms devoted to com-
bine both negative prunings in order to mine a conjunction of one monotone
constraint and one anti-monotone constraint [7, 9].

Other classes of constraints (e.g. succinct [21], convertible [23], loose anti-
monotone [8] or primitive-based constraints [24]) have their own pruning proper-
ties. For instance, by using a particular specialization relation based on prefixes,
the convertibility provides negative pruning w.r.t. this relation. The inductive
databases framework [15] proposes to decompose complex constraints into sev-
eral constraints having suitable properties like monotonicity. Thereby, it is again
possible to exploit monotone pruning conditions. For example, the mining of
emerging patterns can be expressed as a disjunction of conjunctions of such con-
straints [10]. Based on version spaces [20], an algebra is proposed to evaluate and
optimize such inductive queries [18]. Introduced in [16], the concept of witness
simultaneously allows pruning patterns according to different kinds of special-
ization (e.g., coming from monotonicity or convertibility). This pruning strategy
has the originality to take into account the positive pruning. Nevertheless, given
a constraint without monotone property, the authors do not propose a method
to automatically obtain witnesses.

2.3 Problem Statement and Key Ideas

As indicated in the introduction, in this paper, we automatically deduce posi-
tive and negative pruning conditions for any primitive-based constraint. This is

206 A. Soulet and B. Crémilleux

achieved thanks to the characteristics of the constraint. By using the running
example of the area constraint, we give now the main idea of our approach.
Let us note that many works mine closed patterns [22], fault-tolerant bi-sets [4],
tiles [12] and blocks [11]. Constrained closed patterns are a subset of the patterns
satisfying the area constraint and mining the closed patterns do not provide the
complete collection of patterns satisfying the area constraint. In our approach,
we preserve the completeness for the area constraint and more generally for any
primitive-based constraint.

A key point is to observe the area behavior with the shortest and the longest
patterns. Given a constant l, we notice that count(X)× l ≥ γ is anti-monotone.
The difficulty is to fix l such that count(X)× l < γ implies area(X) < γ. This
is checked as soon as l is greater than or equal to the length of each pattern.
As the mined patterns are present at least once in D, the longest pattern has a
size equal to the longest object. Thus in our mining context (see Table 1), l can
be fixed to 4 and count(X) < 6/4 becomes a valid negative pruning condition
w.r.t. the specialization. Thereby, as count(CD) = 1 is lower than 6/4, CD
satisfies the pruning condition and its supersets do not satisfy the constraint.
Then, we can negatively prune the patterns ACD, BCD and so on. Similarly, as
all the patterns in D have a frequency lower than or equal to 5, we obtain that
length(X) < 6/5 is a negative pruning of area(X) ≥ 6 w.r.t. the generalization.
Note that the relevant values (4 for the negative pruning condition w.r.t. the
specialization and 5 for the negative pruning condition w.r.t. the generalization)
are only deduced from the specificities of D (properties coming from the longest
and shortest patterns present at least once in D). In Section 4.1, we will see that
these features are embedded in the two virtual patterns. In the following, we
generalize these principles to the primitive-based constraints.

3 Scope of the Primitive-Based Framework

The next sections deal with the primitive-based constraints and the bounding
operators. We give here a more general definition than in [24] to easily extend
the primitive-based framework to virtual patterns.

3.1 The Primitive-Based Constraints

Contrary to the usual classes of constraints, the primitive-based constraints are
based on a set of primitives. The primitive-based constraints depicted in [24], are
only restricted to a particular set of primitives. In this paper, we extend them
by defining the notion of primitive:

Definition 1 (primitive). Let Si1 , . . . , Sin
and Sj be posets. A function p :

Si1×· · ·×Sin
→ Sj is a primitive iff for each variable, p is a monotone function

(when the others remain constant).

The set of primitives is denoted by P. Let us note that count and length are
primitives of our framework because they are respectively a decreasing and an

Exploiting Virtual Patterns for Automatically Pruning the Search Space 207

increasing functions. Given a function val : A →)+, we extend it to a pattern
X and note X.val the multiset {val(a)|a ∈ X}. This kind of function is used
with the usual SQL-like primitives sum, min and max. For instance, sum(X.val)
is the sum of val of each attribute of X. The considered primitives are based on
three spaces: the booleans B (i.e., true or false), the positive reals)+ and the
patterns of LA, where LA denotes the language associated with the attributes
A (i.e., the power-set 2A without the empty set). These different spaces are
ordered sets: false < true for booleans, the usual ordering relation for reals and
the inclusion operator for sets. The latter is only a partial order relation.

In practice, more complex primitives are useful to the user. For instance, the
area function is not monotone, but it is a combination of several primitives of P:
the area is decomposed into count(X) × length(X). This kind of combination
can be seen as a high-level primitive. The next definition provides the set of all
the possible high-level primitives starting from P:

Definition 2 (high-level primitive). The set of high-level primitives of degree
n, denoted by Hn, is recursively defined by:

– if n = 0: H0 is the set of the primitives P defined on LA.
– if n > 0: Hn is the set of functions h such that h = p(h1, . . . , hk) where

p ∈ P of arity k and ∀i ∈ {1, . . . , k}, hi ∈ Hni
, with maxi∈{1,...,k}ni = n−1.

p(h1, . . . , hk) is named the decomposition of h.

Following on, the set of whole high-level primitives is noted H i.e., H =
⋃∞

i=0Hi.
For instance, as count and length are monotone primitives from LA to)+, they
belong to H0. Thus, the area belongs to H1 (and then, deg area = 1) because
its affix decomposition is ×(count, length) and P contains ×.

A primitive-based constraint is a constraint which is a high-level primitive
of H:

Definition 3 (primitive-based constraint). A constraint q : LA → B is a
primitive-based constraint iff q is a high-level primitive of H.

A primitive-based constraint is a combination of monotone primitives, defined
from LA to B. The set of such constraints is denoted by Q. Then, we have Q =
{q : LA → B|q ∈ H}. Table 2 recursively defines the subset of Q corresponding
to the particular primitives seen above.

We give now some examples of constraints belonging to Q and highlighting
the generality of our framework (more examples are given in [24]).⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

count(X)× length(X) ≥ 6 minimal area (nothing)
(min(X.val) + max(X.val))/2 ≤ 50 maximal mean (loose anti-monotone)
sum(X.val)/length(X) ≥ 25 minimal average (convertible)
AE ⊆ X having AE (monotone)
count(X) ≥ 2 minimal frequency (anti-monotone)

We proved that the primitive-based constraints constitute a superclass of
monotone and anti-monotone constraints [25]. Furthermore, the primitive-based

208 A. Soulet and B. Crémilleux

Table 2. A subset of the primitive-based constraints Q

Constraint q ∈ Q Primitive(s) Operand(s)
q1θq2 θ ∈ {∧,∨} (q1, q2) ∈ Q2

θq1 θ ∈ {¬} q1 ∈ Q
e1θe2 θ ∈ {<,≤} (e1, e2) ∈ E2

s1θs2 θ ∈ {⊂,⊆} (s1, s2) ∈ S2

constant b ∈ B - -

Aggregate expression e ∈ E Primitive(s) Operand(s)
e1θe2 θ ∈ {+,−,×, /} (e1, e2) ∈ E2

θ(s) θ ∈ {count, length} s ∈ S
θ(s.val) θ ∈ {sum, max, min} s ∈ S

constant r ∈ �+ - -

Syntactic expression s ∈ S Primitive(s) Operand(s)
s1θs2 θ ∈ {∪,∩, \} (s1, s2) ∈ S2

variable X ∈ LA - -
constant l ∈ LA - -

constraint is closed under boolean combinations [25]. These two properties high-
light the generality of the operators defined in the next sections because they
can be applied to numerous and varied constraints.

3.2 The Lower and Upper Bounding Operators

This section briefly recalls a key result which is necessary to understand the rest
of this paper. This result has been introduced in [24], but we extend it to any
high-level primitive (see Definition 2).

Let X and Y be two patterns. The interval between these patterns (denoted
[X,Y]) corresponds to the set {Z ∈ LA|X ⊆ Z ⊆ Y }. We start by giving the
definition of the bounding operators denoted #�$ and %�&3:

Definition 4 (bounding operators). Let h be a high-level primitive and
[X,Y] be an interval, #h$〈X,Y 〉 and %h&〈X,Y 〉 are defined as below:

– if deg h = 0: #h$〈X,Y 〉 = h(X) and %h&〈X,Y 〉 = h(Y) iff h is an increasing
function. Otherwise h decreases, #h$〈X,Y 〉 = h(Y) and %h&〈X,Y 〉 = h(X).

– if deg h ≥ 1: #h$〈X,Y 〉 = p(h′
1, . . . , h

′
k) and %h&〈X,Y 〉 = p(H ′

1, . . . , H
′
k)

where p(h1, . . . , hk) is the decomposition of h and for each variable i ∈
{1, . . . , k}:⎧⎨

⎩
h′

i = #hi$〈X,Y 〉 and H ′
i = %hi&〈X,Y 〉 if p increases with

the ith variable
h′

i = %hi&〈X,Y 〉 and H ′
i = #hi$〈X,Y 〉 otherwise

Starting from h and [X,Y], these operators are recursively applied and lead to
automatically compute a lower and an upper bounds of [X,Y] for h. Table 3 gives
3 To alleviate the notations, we replace ���([X, Y]) by ���〈X, Y 〉.

Exploiting Virtual Patterns for Automatically Pruning the Search Space 209

Table 3. The definitions of ��� and ��� with particular primitives

e ∈ Ei Primitive(s) �e�〈X, Y 〉 �e�〈X, Y 〉
e1θe2 θ ∈ {∧,∨, +,×,∪,∩} �e1�〈X, Y 〉θ�e2�〈X, Y 〉 �e1�〈X, Y 〉θ�e2�〈X, Y 〉
e1θe2 θ ∈ {>,≥,⊃,⊇,−, /, \} �e1�〈X, Y 〉θ�e2�〈X, Y 〉 �e1�〈X, Y 〉θ�e2�〈X, Y 〉
θe1 θ ∈ {¬, count, } θ�e1�〈X, Y 〉 θ�e1�〈X, Y 〉

θ(e1.val) θ ∈ {min} θ(�e1�〈X, Y 〉.val) θ(�e1�〈X, Y 〉.val)
θ(e1) θ ∈ {length} θ�e1�〈X, Y 〉 θ�e1�〈X, Y 〉

θ(e1.val) θ ∈ {sum, max} θ(�e1�〈X, Y 〉.val) θ(�e1�〈X, Y 〉.val)
c ∈ Ei - c c

X ∈ LA - X Y

the description of the lower and upper bounding operators corresponding to the
subset of the primitives P given in Table 2. In Table 3, the general notation Ei

designates one space among B,)+ or LA and Ei the associated expressions (for
instance, the set of constraints Q for the booleans B).

Let us illustrate #�$ and %�& on the area constraint: as ≥ increases in B ac-
cording to the first variable and decreases according to the second one, we have
#area(X) ≥ 6$〈X,Y 〉 = #area(X)$〈X,Y 〉 ≥ %6&〈X,Y 〉 (this is illustrated by
the second line in Table 3). As 6 is a constant and × increases with each vari-
able, we obtain respectively that %6&〈X,Y 〉 = 6 (line 7) and #area(X)$〈X,Y 〉 =
#count(X)$〈X,Y 〉 × #length(X)$〈X,Y 〉 (line 1). Finally, #area(X) ≥ 6$〈X,Y 〉
is equal to count(Y) × length(X) ≥ 6 because count decreases (line 3) and
length increases (line 5). In the same way, %area(X) ≥ 6&〈X,Y 〉 is equal to
count(X)× length(Y) ≥ 6.

The following property justifies that the operators #�$ and %�& are respectively
named the lower and upper bounding operators:

Property 1 (bounds of an interval [24]). Let q be a primitive-based con-
straint, #q$ and %q& are respectively a lower bound and an upper bound of q i.e.,
given an interval [X,Y] and a pattern Z ∈ [X,Y], we have #q$〈X,Y 〉 ≤ q(Z) ≤
%q&〈X,Y 〉.

These top-level operators are useful to obtain efficient pruning conditions of
a primitive-based constraint on an interval [24]. For instance, %area(X) ≥ 6&
〈CD,ABCD〉 = count(CD) × length(ABCD) ≥ 6 is false. Then, any pattern
included in [CD, ABCD] has an area smaller than 6 and we can negatively
prune this interval.

In this paper, we re-use these bounding operators on intervals delimited by a
virtual pattern and a pattern X of the search space. Such intervals are in fact
all the generalizations or all the specializations of X.

4 Virtual Patterns

This section introduces the bottom and top virtual patterns and links them to
the primitive-based framework.

210 A. Soulet and B. Crémilleux

4.1 Definition of Virtual Patterns

A virtual pattern dissents from a usual pattern of LA because its properties,
by embedding specificities of the mining context, differ from those of the usual
patterns. This behavior constitutes its great interest.

We recall that by definition (see Section 2.1), the extracted patterns have to
be present in the dataset. The collection of present patterns in the dataset is
denoted by C, i.e., C = {X ∈ LA|count(X) ≥ 1}. Our example dealing with the
area constraint (Section 2.3) has shown the usefulness of the information (e.g.,
length, frequency) concerning the smallest and longest patterns of collection C.
The bottom and top virtual patterns are an elegant way to bring together the
information. We start by giving their definition:

Definition 5 (bottom and top virtual patterns). The bottom virtual pat-
tern ⊥ and the top virtual pattern � are respectively defined as ∅ and A, which
have for each function p : LA →)+ the following properties:

p(⊥) =
{

minX∈C p(X), if p is an increasing function
maxX∈C p(X), if p is a decreasing function

p(�) =
{

maxX∈C p(X), if p is an increasing function
minX∈C p(X), if p is a decreasing function

The bottom virtual pattern ⊥ is clearly an imaginary pattern. For instance, even
if it is defined as ∅ (its cardinality (or length) of which is zero in reality), Defini-
tion 5 fixes its length equal to 1. Indeed, we have length(⊥) = minX∈C length(X)
because the length is an increasing function on LA. As the length of the shortest
patterns is equal to 1, we obtain that length(⊥) = 1. The top virtual pattern �
is an imaginary pattern whenever all the objects of D are different from A and,
in this case, it does not belong to the collection C.

Let us note that according to Definition 5, the virtual patterns are the same
for any constraint. In fact, the virtual patterns ⊥ and � only depend on the
mining context (i.e., the dataset and the additional information). For instance,
the values of sum, min or max for each virtual pattern is linked to those of the
tables of values. The left part of Table 4 formulates their definition according
to the particular mining context given by Table 1. The right part gives the
definition of the patterns ∅ and A.

Table 4 highlights a twofold advantage of the bottom and top virtual patterns
compared to the real patterns ∅ and A. First, the empty set is not defined for
all the primitives used in constraints. Second, the virtual pattern ⊥ (resp. �)
is more refined than the pattern ∅ (resp. A). For instance, the pattern ABC is
included in both A and � (since the latter is defined as A). But, length(�) = 4
is a better approximation of length(ABC) = 3 than length(A) = 6. Section 5.3
shows that the pruning conditions resulting from these virtual patterns would
be ineffective with the patterns ∅ and A. Thereby, virtual patterns are useful
tricks to manipulate constraints and then, speed-up computations.

Thanks to Property 2 (see below), we focus now on the patterns which are
at the core of the properties of ⊥ and �. In the rest of the paper, the sets Min

Exploiting Virtual Patterns for Automatically Pruning the Search Space 211

Table 4. Definition of the virtual patterns ⊥ and � (in our particular mining context)
and comparison with the patterns ∅ and A

Primitive p p(⊥) p(�)
count 5 1
length 1 4
sum 10 165
min 70 10
max 10 70

Primitive p p(∅) p(A)
count 7 0
length 0 6
sum - 210
min - 10
max - 70

and Max respectively denote the minimal patterns and the maximal patterns
of C with respect to the partial order ⊆ (i.e., Min = {X ∈ C| � ∃Y ∈ C, Y ⊂ X}
and Max = {X ∈ C| � ∃Y ∈ C, X ⊂ Y }). These two sets of extreme patterns
present in D allow us to directly compute the virtual patterns:

Property 2. The virtual patterns ⊥ and � check the following relations for
each function p : LA *→)+:

p(⊥) =
{

minX∈Min p(X), if p is an increasing function
maxX∈Min p(X), if p is a decreasing function

p(�) =
{

maxX∈Max p(X), if p is an increasing function
minX∈Max p(X), if p is a decreasing function

Proof. Let p : LA *→)+ be an increasing function. For each pattern X ∈ C,
there exists Y ∈ Min such that Y ⊆ X. As p increases, we obtain that p(Y) ≤
p(X) and minY ∈Min p(X) ≤ minX∈C p(X). As Min ⊆ C, we conclude that
minX∈C p(X) = minY ∈Min p(X). The three other relations are proven with a
similar reasoning. ��
Property 2 highlights that the bottom (resp. top) virtual patterns summarizes
the knowledge about the shortest (resp. longest) patterns w.r.t. ⊆. This property
shows that ⊥ and � can be efficiently computed. For instance, with the attribute
language LA, the only attributes (resp. objects) allow us to define the virtual
pattern ⊥ (resp. �).

Even if we have defined the virtual patterns separately from the primitive-
based framework, they can naturally be integrated in this framework.

4.2 Extension of the Primitive-Based Framework to Virtual
Patterns

This section introduces a new language based on virtual patterns. Property 3
proves that the language LA can be replaced by this new one in the primitive-
based framework.

We consider the virtual language LV = C ∪ {⊥,�}. The usual partial order
⊆ on LA is again a partial order on LV . As for the language LA, if X ∈ LV
is included in Y ∈ LV , the interval [X,Y] corresponds to the patterns included

212 A. Soulet and B. Crémilleux

[⊥, X]⊥Min

C

X

∅

A

�
Max

[X,�]C

X

∅

A

Fig. 1. Representation of the intervals [⊥, X] and [X,�] on virtual lattices

between X and Y . In particular, we can note that for each pattern X of LV ,
we have ⊥ ⊆ X ⊆ �. Then, the intervals [⊥, X] and [X,�] have a meaning and
contain respectively all the subsets and all the supersets of X. Figure 1 represents
two virtual lattices corresponding to the virtual language LV . In both lattices,
the bottom (resp. top) dashed line indicates the minimal patterns Min (resp.
maximal patterns Max) present in D. The gray shape illustrates the interval
[⊥, X] (resp. [X,�]) on the left (resp. right) lattice.

The poset (LV ,⊆) is easy to exploit in the primitive-based framework. Indeed,
as all the definitions and the properties of primitive-based framework are based
on its primitives, we extend this framework to the virtual language by proving
that its primitives deal again with this new language:

Property 3. A monotone primitive p on LA is a monotone primitive on LV .

Proof. Let p be a monotone primitive on LA. p is monotone (Definition 1) and
we distinguish two cases. First, if p increases on LA, p is also an increasing
function on C because C ⊆ LA. Besides, let X ∈ C, as p(⊥) = minY ∈C p(Y),
we obtain that p(⊥) ≤ p(X). Similarly, let X ∈ C, Definition 5 shows that
p(�) = maxY ∈C p(Y) ≥ p(X). Thus, p is an increasing function on LV . Second,
if p decreases on LA, a similar approach allows us to conclude that p remains a
decreasing function on LV and then, a monotone primitive from LV to)+. ��
This property expresses that the virtual language LV can replace the usual lan-
guage LA in the primitive-based framework. In other words, Definition 3 can be
extended to a primitive-based constraint from LV to B and Property 1 deals
with intervals of the virtual language LV .

5 Pruning Conditions

This section shows how to exploit the virtual patterns to automatically obtain
pruning conditions through the primitive-based framework. Furthermore, Theo-
rem 2 shows that the pruning conditions have properties of monotonicity.

5.1 Automatically Deducing Pruning Conditions

We have noticed (Section 2.3) that whenever a pattern X ⊆ Y , we have
(count(Y)× length(Y) ≥ 6) ≤ (count(X)× 4 ≥ 6) in D because length(Y) ≤ 4

Exploiting Virtual Patterns for Automatically Pruning the Search Space 213

and count is a decreasing function. In fact, count(X)× 4 ≥ 6 is an upper bound
of the area constraint on the supersets of X corresponding to [X,�]. As for the
area constraint, if an upper bound of q on [X,�] is equal to false, any superset
of X does not satisfy the constraint because its constraint value is less than or
equal to false. In this case, we can perform a negative pruning according to the
specialization. Similarly, assuming that a lower bound of q on [X,�] is true, we
are sure that all the supersets of X satisfy the constraint and we positively prune
w.r.t. the specialization. The same reasoning with the interval [⊥, X] enables to
obtain negative and positive pruning conditions on the subsets of X.

Logically, we want to use the bounding operators #�$ and %�& (see Definition 4)
in order to bound the value of the constraint on [⊥, X] and [X,�]. Property 3
allows us to manipulate virtual patterns with upper and lower bounding oper-
ators. Then, let q be a constraint and X be a pattern of LV , we introduce the
following notations: ⎧⎪⎪⎨

⎪⎪⎩
#q$⊥〈X〉 ≡ #q$〈⊥, X〉
%q&⊥〈X〉 ≡ %q&〈⊥, X〉
#q$�〈X〉 ≡ #q$〈X,�〉
%q&�〈X〉 ≡ %q&〈X,�〉

Let us come back on our example of the area constraint by applying the op-
erator %�&� to this constraint. We have %area(X) ≥ 6&〈X,Y 〉 = count(X) ×
length(�) ≥ 6 because %area(X) ≥ 6&� = count(X) × length(Y) ≥ 6 (see
Section 3.2) and %q&�〈X〉 ≡ %q&〈X,�〉. As length(�) = 4, we obtain that
count(X) ≥ 6/4 which gives the negative pruning condition count(X) < 6/4
w.r.t. the specialization. Symmetrically, we also deduce the pruning condition
length(X) < 6/5 given in Section 2.3 stemming from %area(X) ≥ 6&⊥〈⊥, X〉 =
count(⊥)× length(X) ≥ 6 = 5× length(X) ≥ 6.

Now, we link the pruning conditions to the bounding operators by giving the
following key theorem:

Theorem 1 (pruning conditions). Let q be a primitive-based constraint, the
primitive-based constraints #q$⊥, #q$�, ¬%q&⊥ and ¬%q&� are pruning conditions
i.e., for each pattern X of LV , one has the following relations:⎧⎪⎪⎨

⎪⎪⎩
#q$⊥〈X〉 = true ⇒ ∀Y ⊆ X, q(Y) = true (positive/generalization)
#q$�〈X〉 = true ⇒ ∀Y ⊇ X, q(Y) = true (positive/specialization)
%q&⊥〈X〉 = false⇒ ∀Y ⊆ X, q(Y) = false (negative/generalization)
%q&�〈X〉 = false⇒ ∀Y ⊇ X, q(Y) = false (negative/specialization)

Proof. Let q be a constraint and X ∈ LV such that #q$⊥〈X〉 is satisfied i.e.,
#q$〈⊥, X〉 = true. Let Y ⊆ X, we can notice that Y ∈ [⊥, X] by definition of the
poset (LV ,⊆) (see Section 4.2). Then, Property 1 ensures that #q$〈⊥, X〉 ≤ q(Y).
Thus, as the lower bound is true, we obtain that q(Y) equals true. The other
assertions are proven by the same way and we conclude that Theorem 1 is correct.

��
Whenever a pruning condition is true for a pattern, we know the value of the
constraint for each subset and superset of this pattern. Thereby, many patterns

214 A. Soulet and B. Crémilleux

can be pruned without having to satisfy the constraint on the whole set of
patterns. For instance, ¬%area(X) ≥ 6&�〈CD〉 = count(CD) < 6/4 = true
expresses that all the supersets of CD can be negatively pruned (see Section 6.2
for the practical use of this pruning). Let us note that the converse of each
assertion given by Theorem 1 is false.

5.2 Properties of Monotonicity of the Pruning Conditions

We show now that the pruning conditions satisfy the properties of monotonicity:

Theorem 2 (monotonicity of pruning conditions). Let q be a primitive-
based constraint, the pruning conditions ¬%q&� and #q$� (resp. ¬%q&⊥ and #q$⊥)
are anti-monotone (resp. monotone) according to the specialization of the patterns.

We start by giving Lemma 1 which facilitates the understanding of this theorem.
This lemma expresses that the accuracy of the bounding operators increases
when the size of the interval decreases.

Lemma 1. Let h ∈ H and [X1, Y1] ⊆ [X2, Y2], we have #h$〈X1, Y1〉 ≥ #h$
〈X2, Y2〉 and %h&〈X1, Y1〉 ≤ %h&〈X2, Y2〉.

Proof. Let h ∈ H and let [X1, Y1] ⊆ [X2, Y2] be two intervals. First, if deg h =
0, we can distinguish two cases. If h is an increasing function, as we have
#h$〈X,Y 〉 = h(X) and %h&〈X,Y 〉 = h(Y), we check that h(X1) ≥ h(X2)
and h(Y1) ≤ h(Y2). With a decreasing function, we can also conclude that
the hypothesis is true. Second, if deg h = n, we fix the decomposition of h
is p(h1, . . . , hk). Suppose that for all the h′ such that deg h′ < n, we have
#h′$〈X1, Y1〉 ≥ #h′$〈X2, Y2〉 and %h′&〈X1, Y1〉 ≤ %h′&〈X2, Y2〉. If p is an increas-
ing function with the ith variable, Definition 4 ensures that the lower bounding
operator is again applied on the ith operand in order to compute #h$. As we
have #hi$〈X1, Y1〉 ≥ #hi$〈X2, Y2〉 by hypothesis, p is greater on [X1, Y1] than
on [X2, Y2]. On the contrary, when p decreases with the ith variable, the up-
per bounding operator is applied to compute #h$. Thus, p is greater on [X1, Y1]
than on [X2, Y2] because %hi&〈X1, Y1〉 ≤ %hi&〈X2, Y2〉. Finally, by applying this
approach for all the i ∈ {1, . . . , k}, we obtain that #h$〈X1, Y1〉 ≥ #h$〈X2, Y2〉.
Dually, we have also %h&〈X1, Y1〉 ≤ %h&〈X2, Y2〉. Thus, by induction, we conclude
that Lemma 1 is right. ��
We prove now Theorem 2:

Proof. Let q ∈ Q and X be a pattern such that #q$�〈X〉 is true. Let Y be a
pattern such that X ⊆ Y . As we have #q$�〈X〉 = #q$〈X,�〉 and [Y,�] ⊆ [X,�],
we obtain that #q$〈Y,�〉 ≥ #q$〈X,�〉 = true (Lemma 1). Thus, #q$� is anti-
monotone. The other properties about monotonicity are proven by the same
method and we conclude that Theorem 2 is correct. ��
Theorem 2 clearly highlights the link between the pruning conditions and the
monotonicity. In practice, the usual algorithms which mine monotone or/and
anti-monotone constraints, can naturally push the negative pruning conditions

Exploiting Virtual Patterns for Automatically Pruning the Search Space 215

Table 5. Pruning conditions corresponding to our examples of constraints

Constraint Pruning conditions

count(X) × length(X) ≥ 6 count(X) ≥ 6 (pos./gen.)
length(X) ≥ 6 (pos./spec.)

length(X) < 6/5 (neg./gen.)
count(X) < 6/4 (neg./spec.)

(min(X.val) + max(X.val))/2 ≤ 50 max(X.val) ≤ 30 (pos./gen.)
min(X.val) ≤ 30 (pos./spec.)
min(X.val) > 90 (neg./gen.)
max(X.val) > 90 (neg./spec.)

sum(X.val)/length(X) ≥ 25 10/length(X) ≥ 25 (pos./gen.)
sum(X.val)/4 ≥ 25 (pos./spec.)
sum(X.val) < 25 (neg./gen.)

165/length(X) < 25 (neg./spec.)
AE ⊆ X false (pos./gen.)

AE ⊆ X (pos./spec.)
AE �⊆ X (neg./gen.)

false (neg./spec.)
count(X) ≥ 2 count(X) ≥ 2 (pos./gen.)

false (pos./spec.)
false (neg./gen.)

count(X) < 2 (neg./spec.)

(see Section 6.1). Table 5 gives the four pruning conditions for each constraint
introduced in Section 3.1. We can note that each pruning condition is monotone
or anti-monotone.

In Table 5, many pruning conditions are very efficient. For instance, the mini-
mal average constraint can be efficiently mined with the positive pruning condi-
tion according to the specialization (i.e., sum(X.val)/4 ≥ 25). In particular, as
sum(AC.val) equals 135, all the supersets of the pattern AC (i.e., ABC, ACD
and ABCD in our data mining context) can be positively pruned. However, for
one constraint, all the pruning conditions are not effective in a given context. For
instance, the positive pruning condition according to the generalization is useless
with the minimal frequency constraint (due to the fact that this constraint is anti-
monotone). Indeed, we get false for this positive pruning condition, which means
that there is no pruning. Nevertheless, we can observe a good complementarity be-
tween thepruning conditions, especiallybetween thepositive andnegative ones.Fi-
nally, let us note that the monotone and anti-monotone constraints are well treated
by our operators. They allow us to deduce the usual negative pruning condition
with the“havingAE”and theminimal frequencyconstraint,whichare respectively
AE �⊆ X and count(X) < 2. In this case, we get the optimal pruning conditions.

5.3 Relevance of the Definition of the Virtual Patterns

Now we provide a comment about the definition of the virtual patterns compared
to the empty set and the set of attributes. Let us assume that we would like to use

216 A. Soulet and B. Crémilleux

∅ and A instead of the virtual patterns ⊥ and �. Even if the generalizations and
the specializations of X respectively correspond to the intervals [∅, X] and [X,A],
the bounding operators provide a poor interest for such intervals. For instance,
%area(X) ≥ 6&〈X,A〉 = count(X) × length(A) ≥ 6 = count(X) × 6 ≥ 6 only
expresses that the mined patterns have to be present in the dataset. Similarly,
%area(X) ≥ 6&〈∅, X〉 = count(∅) × length(X) ≥ 6 = 7 × length(X) ≥ 6 offers
the useless pruning condition length(X) < 0.86 which is never satisfied by any
pattern. Section 6.2 clearly points and quantifies the assets of the virtual pattern
� compared to the pattern A. Thus, the concept of virtual patterns is a key point
of our method.

6 Experimental Results

This section illustrates how to take advantage of the pruning conditions and
reports our performance analysis.

6.1 Practical Uses of Pruning Conditions

In these experiments, we focus on the negative pruning conditions according to
the specialization. We use two approaches (Music-� and Apriori-� processes)
in order to mine patterns satisfying a primitive-based constraint q. These two
mining processes are sound and complete.

Music-� mining process. Based on the primitive-based framework, we have
proposed a constraint solver named Music [24] which mines soundly and com-
pletely patterns under a primitive-based constraint q. It benefits from a negative
pruning condition according to the specialization (which is discovery preserving
[3]) to improve the extraction. The proposed approach (see Figure 2) exploits the
constraint handler implementing %�&� which provides the anti-monotone const-
raint qAM .

User

q

Solver

Mining process

Music

patterns
Constrained

qAM

q

Constraint
handler

%�&�

Fig. 2. Illustration of Music-� process

Apriori-� mining process. This process is based on an Apriori-like algo-
rithm [1, 19]. We use this process to demonstrate contribution of the virtual
patterns even for this simple method. At first, we mine all the patterns satis-
fying %q&� i.e., we push the negative pruning condition w.r.t. the specialization
as an anti-monotone constraint. As previously, the constraint handler (i.e., the
box denoted by %�&�) automatically computes the anti-monotone constraint.

Exploiting Virtual Patterns for Automatically Pruning the Search Space 217

patterns
Constrained

User

Constraint

q

patterns

q

Mining process

Temporary

q
AM

Solver Filter
handler

Apriori%�&�

Fig. 3. Illustration of Apriori-� process

Secondly, the extracted patterns are post-processed to only select the patterns
which satisfy q. Figure 3 depicts this mining process.

Let us note that many existing algorithms (see Section 2.2) can also benefit
from these pruning conditions. For instance, the framework [16] enables to simul-
taneously take advantage of the negative and positive pruning conditions w.r.t.
the specialization. Indeed, given a primitive-based constraint, the patterns which
satisfy #q$� or ¬%q&�, are respectively positive and negative witnesses. Besides,
DualMiner [9] and ExAnte [6] can use the two negative pruning conditions
automatically computed by applying %�&⊥ and %�&�.

6.2 Performance Analysis

The aim of our experiments is to measure the runtime benefit brought by the
negative pruning condition according to the specialization obtained thanks to the
virtual patterns. We compare Music-� and Apriori-� (see previous section)
to four following approaches:

– Music: in this approach, we use Music without taking into account any
optimization due to the upper bounding operator. In particular, the pruning
conditions are not exploited.

– Apriori: in this approach, the original algorithm is used at first to mine the
collection C. Then, the patterns satisfying the constraint are achieved by a
post-processing step.

– Music-A: this approach is briefly described at Section 5.3. It exploits the up-
per bounding operator with the interval [X,A] instead of considering [X,�],
with the use of Music.

– Apriori-A: this approach is similar to the previous one, except that Apri-
ori is used instead of Music.

All the experiments were conducted on a 2.2 GHz Pentium IV processor with
Linux operating system and 3GB of RAM memory. The used dataset is mush-
room coming from the FIMI repository4. The constraints using numeric values
were applied on a table of values randomly generated within the range [1,100].
Table 6 provides the definition of the virtual patterns ⊥ and � with the used
table of values.
4 http://fimi.cs.helsinki.fi/data/

218 A. Soulet and B. Crémilleux

Table 6. The bottom and top virtual patterns with mushroom

Primitive p p(⊥) p(�)
count 8124 1
length 1 23
sum 0 1166
min 97 0
max 0 97

 0

 100

 200

 300

 400

 500

 600

 700

 800

 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e(
s)

Size of area

Minimal area constraint

Music-T
Music-A

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 3000 4000 5000 6000 7000 8000 9000 10000

T
im

e(
s)

Size of area

Minimal area constraint

Apriori-T
Apriori-A

Fig. 4. Runtime performances with the minimal area constraint

Figure 4 reports the runtime performances for mining the minimal area con-
straint according to the size of the area. The results have been split into two parts
because there is an order of magnitude between Music-like and Apriori-like
approaches. The left and right charts respectively plot the comparison between
Music-A and Music-�, and the comparison between Apriori-A and Apriori-
�. Results with Apriori and Music are not drawn: these approaches fail for
all the area thresholds. Apriori-A fails whenever the area size diminishes (i.e.,
less than 6000).

First, we can observe that the improvement brought by the primitive-based
framework and the lower bounding operator: Music-A (resp. Apriori-A) is bet-
ter than Music (resp. Apriori). In particular, due to the selectivity of the con-
straint, the efficiency of the Apriori-like and Music-like approaches increases
with the area size. Second, the best performances (in their own category) are
achieved by Apriori-� and Music-�. This result underlines the usefulness of
the virtual patterns with the area constraint.

Figure 5 plots the runtime performances for the minimal average constraint on
the mushroom dataset. We use here an additional minimal frequency constraint
with a threshold fixed at 2% in order to make feasible Apriori. With such a
frequency threshold, the impact of pruning condition is weak on Music. Thus, all
the Music-like approaches are comparable. The right chart shows that Apriori-
A and Apriori have the same results. Besides, Apriori-� outperforms Apriori
and Apriori-A whenever the minimal average exeeds 70.

Exploiting Virtual Patterns for Automatically Pruning the Search Space 219

 0

 100

 200

 300

 400

 500

 600

 700

 800

 50 60 70 80 90 100

T
im

e(
s)

Minimal average

Minimal average constraint

Music-T
Music-A

Music

 0

 500

 1000

 1500

 2000

 50 60 70 80 90 100

T
im

e(
s)

Mininal average

Minimal average constraint

Apriori-T
Apriori-A

Apriori

Fig. 5. Runtime performances with the minimal average constraint

The efficiency of the pruning depends on the selectivity of the constraint. As
we only use the negative pruning, the more selective the constraint, the faster the
mining. Even if Music-� clearly outperforms Apriori-�, the negative pruning
condition w.r.t. specialization has a good impact on both algorithms. Thus,
the mining is always improved and extractions intractable until now become
feasible.

7 Conclusion

In this paper, we have proposed the use of virtual patterns to automatically
compute positive and negative pruning conditions for any primitive-based con-
straint. Virtual patterns are elegant tricks to take into account the specifici-
ties of the data mining context. More precisely, the bottom and top virtual
patterns enable to consider respectively all the subsets and all the supersets
of a given pattern. These virtual patterns lead to automatically obtain four
different pruning conditions for a primitive-based constraint. These pruning
conditions have suitable properties of monotonicity which improve the extrac-
tion step. In practice, many existing algorithms can use them to mine var-
ied constraints. Besides, experimental results on different mining contexts
underline the efficiency of the negative pruning conditions according to the
specialization.

Further work addresses the implementation and the experimentation of virtual
patterns with other kinds of patterns. Secondly we would refine the bottom and
top virtual patterns to take into account more accurately the contiguous subsets
and supersets. In the same way, we would like to revisit mining problems by
introducing other virtual patterns. Finally, another way is to achieve pruning
conditions concerning convertibility.

Acknowledgements. This work has been partially funded by the ACI “masse
de données” (MD 46, 2004-2007) Bingo (Bases de données INductives pour la
GénOmique).

220 A. Soulet and B. Crémilleux

References

[1] R. Agrawal and R. Srikant. Fast algorithms for mining association rules in large
databases. In J. B. Bocca, M. Jarke, and C. Zaniolo, editors, VLDB, pages 487–
499. Morgan Kaufmann, 1994.

[2] R. Agrawal and R. Srikant. Mining sequential patterns. In P. S. Yu and A. L. P.
Chen, editors, ICDE, pages 3–14. IEEE Computer Society, 1995.

[3] R. J. Bayardo. The hows, whys, and whens of constraints in itemset and rule
discovery. In Proceedings of the Workshop on Inductive Databases and Constraint
Based Mining, 2005.

[4] J. Besson, R. Pensa, C. Robardet, and J.-F. Boulicaut. Constraint-based mining
of fault-tolerant patterns from boolean data . In 4th International Workshop
on Knowledge Discovery in Inductive Databases (KDID’05) co-located with the
9th European Conference on Principles and Practice of Knowledge Discovery in
Databases PKDD’05 , pages 13–26, Porto, Portugal, 10 2005.

[5] K. S. Beyer and R. Ramakrishnan. Bottom-up computation of sparse and iceberg
cubes. In A. Delis, C. Faloutsos, and S. Ghandeharizadeh, editors, SIGMOD
Conference, pages 359–370. ACM Press, 1999.

[6] F. Bonchi, F. Giannotti, A. Mazzanti, and D. Pedreschi. Exante: Anticipated data
reduction in constrained pattern mining. In N. Lavrac, D. Gamberger, H. Blockeel,
and L. Todorovski, editors, PKDD, volume 2838 of Lecture Notes in Computer
Science, pages 59–70. Springer, 2003.

[7] F. Bonchi and C. Lucchese. On closed constrained frequent pattern mining. In
ICDM, pages 35–42. IEEE Computer Society, 2004.

[8] F. Bonchi and C. Lucchese. Pushing tougher constraints in frequent pattern
mining. In Ho et al. [14], pages 114–124.

[9] C. Bucila, J. Gehrke, D. Kifer, and W. M. White. Dualminer: a dual-pruning
algorithm for itemsets with constraints. In KDD, pages 42–51. ACM, 2002.

[10] G. Dong and J. Li. Efficient mining of emerging patterns: discovering trends and
differences. In Proceedings of the fifth ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD’99), pages 43–52, New York, NY,
USA, 1999. ACM Press.

[11] K. Gade, J. Wang, and G. Karypis. Efficient closed pattern mining in the presence
of tough block constraints. In W. Kim, R. Kohavi, J. Gehrke, and W. DuMouchel,
editors, KDD, pages 138–147. ACM, 2004.

[12] F. Geerts, B. Goethals, and T. Mielikäinen. Tiling databases. In E. Suzuki and
S. Arikawa, editors, Discovery Science, volume 3245 of Lecture Notes in Computer
Science, pages 278–289. Springer, 2004.

[13] J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation.
In W. Chen, J. F. Naughton, and P. A. Bernstein, editors, SIGMOD Conference,
pages 1–12. ACM, 2000.

[14] T. B. Ho, D. Cheung, and H. Liu, editors. Advances in Knowledge Discovery and
Data Mining, 9th Pacific-Asia Conference, PAKDD 2005, Hanoi, Vietnam, May
18-20, 2005, Proceedings, volume 3518 of Lecture Notes in Computer Science.
Springer, 2005.

[15] T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Commun. ACM, 39(11):58–64, 1996.

[16] D. Kifer, J. Gehrke, C. Bucila, and W. M. White. How to quickly find a witness.
In PODS, pages 272–283. ACM, 2003.

Exploiting Virtual Patterns for Automatically Pruning the Search Space 221

[17] M. Kuramochi and G. Karypis. Frequent subgraph discovery. In N. Cercone,
T. Y. Lin, and X. Wu, editors, ICDM, pages 313–320. IEEE Computer Society,
2001.

[18] S. D. Lee and L. D. Raedt. An algebra for inductive query evaluation. In Proceed-
ings of the Second International Workshop on Inductive Databases (KDID’03),
pages 80–96. Rudjer Boskovic Institute, Zagreb, Croatia, september 2003.

[19] H. Mannila and H. Toivonen. Levelwise search and borders of theories in knowl-
edge discovery. Data Min. Knowl. Discov., 1(3):241–258, 1997.

[20] T. M. Mitchell. Generalization as search. Artif. Intell., 18(2):203–226, 1982.
[21] R. T. Ng, L. V. S. Lakshmanan, J. Han, and A. Pang. Exploratory mining

and pruning optimizations of constrained association rules. In L. M. Haas and
A. Tiwary, editors, SIGMOD Conference, pages 13–24. ACM Press, 1998.

[22] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal. Discovering frequent closed
itemsets for association rules. In C. Beeri and P. Buneman, editors, ICDT, volume
1540 of Lecture Notes in Computer Science, pages 398–416. Springer, 1999.

[23] J. Pei, J. Han, and L. V. S. Lakshmanan. Mining frequent item sets with con-
vertible constraints. In ICDE, pages 433–442. IEEE Computer Society, 2001.

[24] A. Soulet and B. Crémilleux. An efficient framework for mining flexible con-
straints. In Ho et al. [14], pages 661–671.

[25] A. Soulet and B. Crémilleux. Optimizing constraint-based mining by automati-
cally relaxing constraints. In Proceedings of The Fifth IEEE International Con-
ference on Data Mining (ICDM’05), 2005.

Constraint Based Induction of Multi-objective
Regression Trees

Jan Struyf1 and Sašo Džeroski2

1 Katholieke Universiteit Leuven, Dept. of Computer Science,
Celestijnenlaan 200A, B-3001 Leuven, Belgium

Jan.Struyf@cs.kuleuven.be
2 Jozef Stefan Institute, Dept. of Knowledge Technologies,

Jamova 39, 1000 Ljubljana, Slovenia
Saso.Dzeroski@ijs.si

Abstract. Constrained based inductive systems are a key component
of inductive databases and responsible for building the models that sat-
isfy the constraints in the inductive queries. In this paper, we propose
a constraint based system for building multi-objective regression trees.
A multi-objective regression tree is a decision tree capable of predicting
several numeric variables at once. We focus on size and accuracy con-
straints. By either specifying maximum size or minimum accuracy, the
user can trade-off size (and thus interpretability) for accuracy. Our ap-
proach is to first build a large tree based on the training data and to
prune it in a second step to satisfy the user constraints. This has the ad-
vantage that the tree can be stored in the inductive database and used for
answering inductive queries with different constraints. Besides size and
accuracy constraints, we also briefly discuss syntactic constraints. We
evaluate our system on a number of real world data sets and measure
the size versus accuracy trade-off.

1 Introduction

The idea behind inductive databases [13, 7] is to tightly integrate databases with
data mining. An inductive database not only stores data, but also models that
have been obtained by running mining algorithms on the data. By means of a
query language, the end user can retrieve particular models. For example, the
user could query the system for a decision tree that is smaller than 20 nodes, has
an accuracy above 80%, and with a particular attribute in the top node. If the
database does not include a model satisfying the constraints, then an induction
algorithm is called to construct it.

In this paper we propose a constraint based induction algorithm for multi-
objective regression trees (MORTs). MORTs are regression trees [6] capable of
predicting several numeric variables at once [2]. This has two main advantages
over building a separate regression tree for each target: (1) a single MORT is
usually much smaller than the total size of the individual trees for all variables,
and (2) a MORT explicitates dependencies between the different target variables.

F. Bonchi and J.-F. Boulicaut (Eds.): KDID 2005, LNCS 3933, pp. 222–233, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Constraint Based Induction of Multi-objective Regression Trees 223

The approach that we propose is to first build a large tree based on the
training data and then to prune it in a second step to satisfy the user constraints.
This has the advantage that the tree can be stored in the inductive database
and used for answering inductive queries with different constraints. The pruning
algorithm that we propose is an extension to MORTs of the pruning algorithm
for classification trees developed by Garofalakis et al. [12], which in turn is based
on earlier work by Bohanec and Bratko [3] and Almuallim [1]. It is a dynamic
programming algorithm that searches for a subtree of the given tree that satisfies
the size and accuracy constraints. It can either minimize tree size and return the
smallest tree satisfying a minimum accuracy constraint or maximize accuracy
and return the most accurate tree satisfying a maximum size constraint.

After extending the pruning algorithm to MORTs, we present an extensive
empirical evaluation measuring the size versus accuracy trade-off of MORTs
on several real world data sets. Our evaluation shows (1) that the accuracy of
MORTs is close to that of a set of single-objective regression trees of the same
size, and (2) that in many cases tree size can be reduced significantly (thereby
increasing interpretability) at the expense of only a small accuracy loss.

The rest of this paper is organized as follows. In Section 2, we briefly discuss
MORTs and their induction algorithm. Section 3 reviews the pruning algorithm
by Garofalakis et al. and Section 4 extends it to MORTs. Accuracy and syntactic
constraints are discussed in Section 5.The empirical evaluation follows in Section 6.
Future work is discussed in Section 7 and Section 8 states the main conclusions.

2 Multi-objective Regression Trees (MORTs)

MORTs are regression trees [6] capable of predicting several numeric target
variables at once. An example of a MORT is depicted in Fig. 1. Each leaf stores
a vector with as components the predictions for the different target variables.

MORTs have been introduced as a special instance of predictive clustering
trees [2]. In this framework, a tree is viewed as a hierarchy of clusters: the top-
node corresponds to one cluster containing all data, which is recursively parti-
tioned into smaller clusters while moving down the tree. MORTs are constructed
with a standard top-down induction algorithm similar to that of Cart [6] or
C4.5 [15]. The heuristic used in this algorithm for selecting the attribute tests
in the internal nodes is intra-cluster variation summed over the subsets induced
by the test. Intra-cluster variation is defined as N ·

∑T
t=1 Var[yt], with N the

A ≤ 3.1
yes no

B ∈ {b1, b2}
yes no

[0.9, 0.85] [0.1, 0.93]

[0.1, 0.1]

Fig. 1. A MORT predicting two numeric variables

224 J. Struyf and S. Džeroski

number of examples in the cluster, T the number of target variables, and Var[yt]
the variance of target variable t in the cluster. Minimizing intra-cluster variation
results in homogeneous leaves, which in turn results in accurate predictions (the
predicted vector in a leaf is the vector mean of the target vectors of the training
examples belonging to it). More details about MORTs can be found in [2].

3 Constraint-Based Decision Tree Pruning

Fig. 2 defines the pruning method proposed by Garofalakis et al. [12] for comput-
ing for a given maximum tree size k a subtree of the given tree (rooted at node
N) with maximum accuracy (minimum error). First ComputeError is called to
find out which nodes are to be included in the solution and then PruneRecursive
is called to remove the other nodes.

ComputeError employs dynamic programming to compute in Tree[N, k].error
the error of the minimum-error subtree rooted at N containing at most k nodes.
This subtree is either the tree in which N is pruned to a leaf or a tree in which
N has two children (we only consider binary trees) N1 and N2 such that N1
(N2) is a minimum error subtree of size at most k1 (k2) and k1 +k2 = k−1. The
algorithm computes the minimum over these possibilities in the for-loop starting
on line 6. The possibility that N is pruned to a leaf is taken into account by
initializing the error to leaf error(N) in line 4. The flag Tree[N, k].computed is
used to avoid repeated computation of the same information.

After ComputeError completes, Tree[N, k].k1 stores the maximum size of the
left subtree in theminimum-error subtree of atmost k nodes rooted atN . Note that
if Tree[N, k].k1 = −1, then this subtree consists of only the node N . PruneRecur-
sive is called next to prune nodes that do not belong to the minimum-error subtree.

The time and space complexity of the algorithm(s) are both O(nk) with n
the size of the tree and k the maximum tree size parameter [12].

procedure ComputeError(N , k)
1: if Tree[N, k].computed
2: return Tree[N, k].error
3: Tree[N, k].k1 := −1
4: Tree[N, k].error := leaf error(N)
5: if k ≥ 3 and N is no leaf
6: for k1 := 1 to k − 2
7: k2 := k − k1 − 1
8: e := ComputeError(N1, k1)
9: +ComputeError(N2, k2)

10: if e < Tree[N, k].error
11: Tree[N, k].error := e
12: Tree[N, k].k1 := k1

13: Tree[N, k].computed := true
14: return Tree[N, k].error

procedure PruneToSizeK(N , k)
1: ComputeError(N, k)
2: PruneRecursive(N, k)

procedure PruneRecursive(N , k)
1: if N is a leaf
2: return
3: if k < 3 or Tree[N, k].k1 = −1
4: remove children of N
5: else
6: k1 := Tree[N, k].k1

7: k2 := k − k1 − 1
8: PruneRecursive(N1, k1)
9: PruneRecursive(N2, k2)

Fig. 2. The constraint-based decision tree pruning algorithm

Constraint Based Induction of Multi-objective Regression Trees 225

4 Size Constraints for MORTs

The pruning algorithm discussed in the previous section was originally devel-
oped in a classification setting with as error measure the number of misclassified
examples or the minimum description length cost. It is however not difficult to
see that the algorithm can be used in combination with any error measure that
is additive, i.e., a measure for which it holds that if a data set is partitioned into
a number of subsets, the error computed on the whole set is equal to the sum of
the errors computed on the subsets in the partition.

Definition 1 (Additive error measure). An error measure f is additive iff
for any data set D and for any partition of D into subsets Di it holds that
f(D) =

∑
i f(Di).

The additivity property of the error measure is used in lines 8-9 of the Com-
puteError algorithm.

Examples of error measures in the multi-objective regression setting that sat-
isfy the additivity property are squared error and absolute error.

Definition 2 (Squared and absolute error). Given a data set with N ex-
amples and T targets, squared error is defined as SE =

∑N
i=1

∑T
t=1(yt,i − yp

t,i)
2

and absolute error as AE =
∑N

i=1
∑T

t=1 |yt,i − yp
t,i|, with yt,i the actual and yp

t,i

the predicted value for target variable t of example i.

Obviously, the pruning algorithm can also be used to minimize these error mea-
sures by just plugging them in at line 4. Note that minimizing squared error
implicitly also minimizes error measures that are a monotonically increasing
function of the former, such as mean squared error (MSE) and root mean
squared error (RMSE). The same holds for absolute error and mean absolute
error (MAE)1. Therefore, the pruning algorithm can be trivially extended to all
these error measures. In the empirical evaluation (Section 6), we will use the
pruning algorithm in combination with squared error (Definition 2).

We end this section with a number of remarks.

– To obtain good results, it is required that the heuristic used for building
the tree is “compatible” with the error measure, i.e., the heuristic should
be designed to optimize the same error measure as is used in the pruning
algorithm. In our case, one might say that this requirement holds because
the intra-cluster variation heuristic locally optimizes squared error. Locally
optimizing the error measure is however not always the best choice, e.g.,
in the context of classification trees, one should use information gain as
heuristic and not accuracy [6].

– Some error measures that are used in regression tasks, such as Pearson cor-
relation, are neither additive nor a monotonically increasing function of an
additive measure. These error measures cannot be minimized with the prun-
ing algorithm of Fig. 2.

1 Or for any error measure based on a Minkowski distance d(x, y) = (
∑

|xk − yk|p)
1
p .

226 J. Struyf and S. Džeroski

– Garofalakis et al. [12] also propose a method for pushing the constraints into
the tree building phase. While this makes tree building more efficient, it has
the disadvantage that the resulting tree is specific to the constraints in the
given query and that it cannot be used anymore for answering queries with
other constraints.

Pushing constraints in the case of MORTs is more difficult than in the case
of classification trees. The reason is that the constraint pushing algorithm
requires the computation of a lower bound on the error of a partially built
tree. To our knowledge, such a lower bound has not yet been defined for
regression trees or MORTs.

– In this paper, we focus on MORTs, but a similar approach is also possible
for predictive clustering trees [2] in general, as long as the error measure
has the additivity property. For example, one could consider multi-objective
classification trees (MOCTs) with as error measure the number of misclassi-
fied examples summed over the different target variables. For multi-objective
trees with both numeric and nominal target variables one could define an
additive error measure as the (weighted) sum of the measure on the nominal
variables and that on the numeric variables.

5 Maximum Error and Syntactic Constraints

The pruning algorithm can be used to find a subtree with minimum error given
a maximum size constraint. The same algorithm can also be used for solving the
following, dual problem: given a maximum error constraint, find the smallest
tree that satisfies this constraint. To accomplish this, one constructs a sequence
of pruned trees using the algorithm of Fig. 2 for increasing values of the size
constraint k, i.e., k1 = 1, k2 = 3, . . ., km = 2m− 1, until a tree that satisfies the
maximum error constraint is found. The resulting tree is the smallest tree having
an error less than the maximum error constraint. (Computing the sequence of
trees is computationally cheap because the pruning algorithm does not access the
data; leaf error(N) can be computed and stored for each node before running
the pruning algorithm. Moreover, the Tree[N, k] values of small trees can be
reused when constructing larger trees.)

In the multi-objective regression setting, one approach is to specify the max-
imum error summed over all target variables. Another approach is to specify a
bound for each individual target variable. The latter can be useful if an application
demands that some target variables are predicted more accurately than others.

Besides size and error constraints, syntactic constraints are also important
in practice. Although they are not the focus of this paper, we discuss them
briefly. Syntactic constraints can be used as follows in the context of decision
trees. Suppose that a domain expert knows which attributes are important for a
given application. A syntactic constraint can then be used to mine for a decision
tree with such an attribute in the top node. Although other trees with different
attributes in the top node might be equally accurate, the one with the attribute
selected by the expert will probably be more easy to interpret.

Constraint Based Induction of Multi-objective Regression Trees 227

Clus, the system that we will use in the empirical evaluation, supports this
type of syntactic constraints. The idea is that the user can specify a partial
tree (a subtree including the root node) in the inductive query. The induction
algorithm is then initialized with this partial tree and the regular top-down
induction method is used to complete it.

The ability to use syntactic (partial tree) constraints allows for a greater
involvement of the user in the construction of the decision tree and a greater
user influence on the final result. Some domain knowledge of the user can be
taken into account in this way.

6 Empirical Evaluation

The goal of our empirical evaluation is two-fold. First we would like to evaluate
the size versus error trade-off that is possible by using the size constraints in
real world applications. Second, we compare single-objective and multi-objective
regression. The hypothesis that we test is that a single multi-objective tree of size
s is equally accurate as a set of single-objective trees, one for each target variable,
each one of the same size s. Having one single small multi-objective model that
is equally accurate is advantageous because it is easier to interpret than a set of
trees. Moreover, it can explicitly represent dependencies between the different
targets. E.g., the tree in Fig. 1 shows that A > 3.1 has a negative influence on
both targets, while (A ≤ 3.1) ∧ (B /∈ {b1, b2}) has a negative influence on the
first target, but a positive effect on the second.

6.1 Experimental Setup

The size, error and syntactic constraints have been implemented in Clus2. Clus
is a system for building clustering trees [2] in general and MORTs in particular.

The data sets that we use are listed, together with their properties, in Table 1.
Most data sets are of ecological nature. Each data set represents a multi-objective
regression problem and the number of target variables T varies from 2 to 39. A
detailed description of the data sets can be found in the references included in
Table 1.

For each data set, we run Clus in single-objective mode for each target vari-
able and in multi-objective mode. We use 10-fold cross-validation to estimate the
performance of the resulting trees. For each run, we build one large tree, store
it, and then generate subtrees of this tree using the pruning algorithm discussed
in Section 3 for different values of the size constraint k. We set the pruning algo-
rithm to minimize squared error on the training set. (I.e., we follow the approach
proposed in [12]. Note that the algorithm can also be used in combination with
a separate validation set.)

We also include results obtained with the M5’ system from the Weka toolkit
[17]. Note that M5’ only supports single-objective regression.

2 Clus is available from the authors upon request.

228 J. Struyf and S. Džeroski

Table 1. Data set properties: domain, number of instances (N), number of input
attributes (Attr), and number of target attributes (|T |)

Domain Task N Attr |T |
E1 Sigmea real [8] 817 4 2
E2 Sigmea simulated [11] 10368 11 2
E3 Soil quality 1 [9] Acari/Coll./Biodiv. 1944 139 3
E4 Acari groups ” ” 4
E5 Coll. groups ” ” 5
E6 Coll. species ” ” 39
E7 Soil quality 2 [14] 393 48 3
E8 Water quality [10] Plants 1060 16 7
E9 Animals ” ” 7
E10 Chemical 1060 836 16

0 5 10 15 20
0.0

0.25

0.5

0.75

1.0

0 5 10 15 20
0.0

0.25

0.5

0.75

1.0

0 25 50 75 100 125 150
0.0

0.25

0.5

0.75

1.0

0 25 50 75 100 125 150
0.0

0.25

0.5

0.75

1.0

0 25 50 75 100 125 150
0.0

0.25

0.5

0.75

1.0

0 25 50 75 100 125 150
0.0

0.25

0.5

0.75

1.0

SORTs (MSE) MORT (MSE) SORTs (r2) MORT (r2)

M
SE

an
d

r2

Sigmea (Real)

targets = 2

M5-Size 17.0
M5-MSE 0.58
M5-r2 0.51

Sigmea (Simulated)

targets = 2

M5-Size 77.0
M5-MSE 0.00
M5-r2 1.00

M
SE

an
d

r2

Soil quality 1 (Acari/Coll./Bio.)

targets = 3

M5-Size 67.7
M5-MSE 0.62
M5-r2 0.38

Soil quality 1 (Acari groups)

targets = 4

M5-Size 44.5
M5-MSE 0.78
M5-r2 0.22

Max size k (nodes)

M
SE

an
d

r2

Soil quality 1 (Coll. groups)

targets = 5

M5-Size 47.8
M5-MSE 0.75
M5-r2 0.25

Max size k (nodes)

Soil quality 1 (Coll. species)

targets = 39

M5-Size 13.4
M5-MSE 0.88
M5-r2 0.13

Fig. 3. Comparing the MSE and average squared correlation r2 of SORTs and MORTs
for different values of the size constraint k

Constraint Based Induction of Multi-objective Regression Trees 229

6.2 Results

Fig. 3 and Fig. 4 present the results. For each experiment, the mean squared
error (MSE) and the average squared Pearson correlation r2 (averaged over the
T target variables) is reported. For most data sets, the results for the multi-
objective tree are close to these of the set of single-objective trees (SORTs),
especially for large tree sizes. Most results are slightly in favor of the SORTs.
Hence, the increased interpretability offered by MORTs comes at the price of a
small increase in error. One exception is Soil quality 2, where MORTs perform
a little better than SORTs. This effect can be explained by the fact that the
target variables are highly correlated in this data set.

The largest performance difference is obtained on Soil quality 1, Collembola
species. Here SORTs perform clearly better than MORTs. But the number of
target variables (39) is also high. Note that this also implies that the total size of
the SORTs is 39 times the size of the MORT. To investigate this effect further,
we have plotted the results with total model size on the horizontal axis in Fig. 5
and Fig. 6. These results show that for a given total size, the error obtained
with a MORT is in 6 out of 10 data sets clearly smaller than that of the set of
SORTs. (For the other 4, the measured error is similar.)

Observe that the error curves are typically flat for a large size-interval. There-
fore, tree size can in most cases be kept small without loosing much accuracy.

0 10 20 30
0.0

0.25

0.5

0.75

1.0

1.25

0 10 20 30
0.0

0.25

0.5

0.75

1.0

0 10 20 30
0.0

0.25

0.5

0.75

1.0

0 10 20 30
0.0

0.25

0.5

0.75

1.0

SORTs (MSE) MORT (MSE) SORTs (r2) MORT (r2)

M
SE

an
d

r2

Soil quality 2

targets = 3

M5-Size 3.0
M5-MSE 0.93
M5-r2 0.08

Water quality (Plants)

targets = 7

M5-Size 10.7
M5-MSE 0.91
M5-r2 0.09

Max size k (nodes)

M
SE

an
d

r2

Water quality (Animals)

targets = 7

M5-Size 14.4
M5-MSE 0.87
M5-r2 0.13

Max size k (nodes)

Water quality (Chemical)

targets = 16

M5-Size 23.5
M5-MSE 0.85
M5-r2 0.16

Fig. 4. Comparing the MSE and average squared correlation r2 of SORTs and MORTs
for different values of the size constraint k

230 J. Struyf and S. Džeroski

0 5 10 15 20
0.0

0.25

0.5

0.75

1.0

0 5 10 15 20
0.0

0.25

0.5

0.75

1.0

0 25 50 75 100 125
0.0

0.25

0.5

0.75

1.0

0 25 50 75 100 125
0.0

0.25

0.5

0.75

1.0

0 25 50 75 100 125
0.0

0.25

0.5

0.75

1.0

0 50 100 150 200 250 300
0.0

0.25

0.5

0.75

1.0

SORTs (MSE) MORT (MSE) SORTs (r2) MORT (r2)

M
SE

an
d

r2

Sigmea (Real)

targets = 2

Sigmea (Simulated)

targets = 2

M
SE

an
d

r2

Soil quality 1 (Acari/Coll./Bio.)

targets = 3

Soil quality 1 (Acari groups)

targets = 4

Total size (nodes)

M
SE

an
d

r2

Soil quality 1 (Coll. groups)

targets = 5

Total size (nodes)

Soil quality 1 (Coll. species)

targets = 39

Fig. 5. MSE and average squared correlation r2 versus total model size

Based on graphs as in Fig. 3 and Fig. 4 the domain expert can easily select a tree
that has a good trade-off between size (and thus interpretability) and accuracy.

It is interesting to note that no overfitting occurs, except in Soil quality 2.
I.e., for most data sets, the error decreases with tree size to a constant value and
does not increase again for larger trees.

The graphs also include results for M5’ in regression tree mode. Accuracy-
wise, the results of M5’ are close to the results obtained with Clus. The size of
the M5’ trees is always situated in the flat part of the error curve. For some data
sets M5’ generates trees that are rather large. The most extreme case is Sigmea
Simulated where it generates a tree with 77 nodes. By setting a size constraint,
unnecessarily large trees can be easily avoided.

To summarize, MORTs together with size constraints are a good choice if
interpretability is important and a small loss in accuracy can be tolerated. If
accuracy is more important, then a larger MORT might still be preferable over
a set of SORTs, of which the total size will be even larger.

Constraint Based Induction of Multi-objective Regression Trees 231

0 10 20 30
0.0

0.25

0.5

0.75

1.0

0 25 50 75 100
0.0

0.25

0.5

0.75

1.0

0 25 50 75 100
0.0

0.25

0.5

0.75

1.0

0 25 50 75 100 125 150
0.0

0.25

0.5

0.75

1.0

SORTs (MSE) MORT (MSE) SORTs (r2) MORT (r2)

M
SE

an
d

r2

Soil quality 2

targets = 3

Water quality (Plants)

targets = 7

Total size (nodes)

M
SE

an
d

r2

Water quality (Animals)

targets = 7

Total size (nodes)

Water quality (Chemical)

targets = 16

Fig. 6. MSE and average squared correlation r2 versus total model size

7 Further Work

As we already noted in Section 4, the size and error constraints can also be
extended to multi-objective classification and multi-objective prediction with
both nominal and numeric targets. We would like to experimentally evaluate
these settings as well.

We are also planning to compare the MORT and SORT settings in more detail.
Currently, we have compared the extreme case where each target attribute is
predicted by a single regression tree to the other extreme case where all target
attributes are predicted by one single MORT. An in-between approach could be
to partition the target attributes into subsets and construct a MORT for each
subset. Target attributes that depend in a similar way on the input attributes
should be combined in the same subset. Clearly, constructing sets of MORTs for
all possible partitions and picking the partition that minimizes a given trade-
off between error and complexity would be too expensive. Therefore, we would
like to investigate heuristic approaches. One method could be to construct the
partition by clustering the attributes using correlation as similarity measure,
i.e., to put highly correlated attributes in the same cluster. Note that we already
observed in the experiments in Section 6 that MORTs perform good if the target
attributes are highly correlated.

We would also like to investigate the effect of several parameters of the input
data on the relative performance of a MORT compared to a set of SORTs, such
as training set size or the effect of noise.

232 J. Struyf and S. Džeroski

Furthermore, we would like investigate the use of MORTs in ensemble meth-
ods. This has already been explored to some extent by Sain and Carmack [16],
who propose a boosting approach with MORTs. Similarly, MORTs could be used
for bagging [4] and in random forests [5].

8 Conclusion

In this paper, we have proposed a system for constrained based induction of
multi-objective regression trees (MORTs). It supports size, error and syntactic
constraints and works in two steps. In a first step, a large tree is built that
satisfies the syntactic constraints. This tree is stored in the inductive database
and used in a second step to generate trees that satisfy particular size or er-
ror constraints. To accomplish this, we have extended the pruning algorithm
introduced by Garofalakis et al. to MORTs. Two modes of operation are sup-
ported: (1) given a maximum size constraint, return a subtree with the smallest
error, and (2) given a maximum error constraint, return the smallest subtree
that satisfies this constraint.

While we have focused on MORTs, the pruning algorithm can also be extended
to predictive clustering trees in general. E.g., it can also be used for multi-
objective classification and multi-objective prediction with both nominal and
numeric targets.

In an empirical evaluation, we have tested our approach on a number of real
world data sets. Our evaluation shows (1) that the accuracy of MORTs is close
to that of a set of single-objective regression trees, each of the same size, and
(2) that in many cases tree size can be reduced significantly (thereby increasing
interpretability) at the expense of only a small accuracy loss. MORTs together
with size constraints are thus a good choice if interpretability is important and
a small loss in accuracy can be tolerated. Moreover, if we consider total size
instead of average tree size, we observe that for a given total size, the error
obtained with a MORT is smaller than or similar to that of a set of SORTs.

Acknowledgments

The authors are grateful to Hendrik Blockeel who provided valuable comments
on the text and the empirical evaluation. Jan Struyf is a postdoctoral fellow of
the Fund for Scientific Research of Flanders (FWO-Vlaanderen).

References

1. H. Almuallim. An efficient algorithm for optimal pruning of decision trees. Artificial
Intelligence, 83(2):347–362, 1996.

2. H. Blockeel, L. De Raedt, and J. Ramon. Top-down induction of clustering trees.
In Proceedings of the 15th International Conference on Machine Learning, pages
55–63, 1998.

3. M. Bohanec and I. Bratko. Trading accuracy for simplicity in decision trees. Ma-
chine Learning, 15(3):223–250, 1994.

Constraint Based Induction of Multi-objective Regression Trees 233

4. L. Breiman. Bagging predictors. Machine Learning, 24(2):123–140, 1996.
5. L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.
6. L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone. Classification and Re-

gression Trees. Wadsworth, Belmont, 1984.
7. L. De Raedt. A perspective on inductive databases. SIGKDD Explorations,

4(2):69–77, 2002.
8. D. Demšar, M. Debeljak, C. Lavigne, and S. Džeroski. Modelling pollen dispersal

of genetically modified oilseed rape within the field, 2005. Abstract presented at
The Annual Meeting of the Ecological Society of America, Montreal, Canada, 7-12
August 2005.

9. D. Demšar, S. Džeroski, P. Henning Krogh, T. Larsen, and J. Struyf. Using mul-
tiobjective classification to model communities of soil microarthropods. Ecological
Modelling, 2005. To appear.

10. S. Džeroski, D. Demšar, and J. Grbović. Predicting chemical parameters of river
water quality from bioindicator data. Applied Intelligence, 13(1):7–17, 2000.

11. S. Džeroski, N. Colbach, and A. Messean. Analysing the effect of field characteris-
tics on gene flow between oilseed rape varieties and volunteers with regression trees,
2005. Submitted to the The Second International Conference on Co-existence be-
tween GM and non-GM based agricultural supply chains (GMCC-05). Montpellier,
France, 14-15 November 2005.

12. M. Garofalakis, D. Hyun, R. Rastogi, and K. Shim. Building decision trees with
constraints. Data Mining and Knowledge Discovery, 7(2):187–214, 2003.

13. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
Communications of the ACM, 39(11):58–64, 1996.

14. C. Kampichler, S. Džeroski, and R. Wieland. The application of machine learn-
ing techniques to the analysis of soil ecological data bases: Relationships between
habitat features and collembola community characteristics. Soil Biology and Bio-
chemistry, 32:197–209, 2000.

15. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann series in
Machine Learning. Morgan Kaufmann, 1993.

16. R. S. Sain and P. S. Carmack. Boosting multi-objective regression trees. Computing
Science and Statistics, 34:232–241, 2002.

17. I. Witten and E. Frank. Data Mining: Practical machine learning tools and tech-
niques. Morgan Kaufmann, 2005. 2nd Edition.

Learning Predictive Clustering Rules

Bernard Ženko1, Sašo Džeroski1, and Jan Struyf2

1 Department of Knowledge Technologies, Jožef Stefan Institute, Slovenia
Bernard.Zenko@ijs.si, Saso.Dzeroski@ijs.si

2 Department of Computer Science, Katholieke Universiteit Leuven, Belgium
Jan.Struyf@cs.kuleuven.be

Abstract. The two most commonly addressed data mining tasks are
predictive modelling and clustering. Here we address the task of predic-
tive clustering, which contains elements of both and generalizes them to
some extent. Predictive clustering has been mainly evaluated in the con-
text of trees. In this paper, we extend predictive clustering toward rules.
Each cluster is described by a rule and different clusters are allowed to
overlap since the sets of examples covered by different rules do not need
to be disjoint. We propose a system for learning these predictive clus-
tering rules, which is based on a heuristic sequential covering algorithm.
The heuristic takes into account both the precision of the rules (compact-
ness w.r.t. the target space) and the compactness w.r.t. the input space,
and the two can be traded-off by means of a parameter. We evaluate our
system in the context of several multi-objective classification problems.

1 Introduction

Predictive modeling or supervised learning aims at constructing models that
can predict the value of a target attribute (dependent variable) from the known
values for a set of input attributes (independent variables). A wide array of
predictive modeling methods exist, which produce more or less (or not at all)
interpretable models. Typical representatives of the group of methods that result
in understandable and interpretable models are decision tree learning [14] and
rule learning [7].

Clustering [9], on the other hand, is an unsupervised learning method. It
tries to find subgroups of examples or clusters with homogeneous values for all
attributes, not just the target attribute. In fact, the target attribute is usually
not even defined in a clustering task. The result is a set of clusters and not
necessarily their descriptions or models; usually we can link new examples to
the constructed clusters based on e.g., proximity in the attribute space.

Predictivemodeling and clustering are therefore regarded as quite different tech-
niques. Nevertheless, different viewpoints also exist [10] which stress the many sim-
ilarities that some predictive modeling techniques, most notably techniques that
partition the example space, such as decision trees, share with clustering. Decision
trees partition the set of examples into subsets with homogeneous values for the
target attribute, while clustering methods search for subsets in which the examples
have homogeneous values for all the attributes.

F. Bonchi and J.-F. Boulicaut (Eds.): KDID 2005, LNCS 3933, pp. 234–250, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Learning Predictive Clustering Rules 235

In this paper, we consider the task of predictive clustering [1, 2], which con-
tains elements of both predictive modelling and clustering and generalizes them
to some extent. In predictive clustering, one can simultaneously consider homo-
geneity along the target attribute and the input attributes, and trade-off one for
the other. It has been argued [1] that predictive clustering is useful in noisy do-
mains and in domains with missing values for the target attribute. Furthermore,
predictive clustering has been proven useful in applications with non-trivial tar-
gets such as multi-objective classification and regression [2, 17], ranking [20], and
hierarchical multi-classification [18].

Predictive clustering has been evaluated mainly in the context of trees. In this
paper we extend predictive clustering toward rules. We call the resulting frame-
work predictive clustering rules (PCRs). The task of learning PCRs generalizes
the task of rule induction, on one hand, and clustering, and in particular item
set constrained clustering [15, 16], on the other.

Since learning PCRs is a form of constrained clustering, it is directly related
to constraint-based data mining and inductive databases (IDBs). Constraint-
based clustering is an under-researched topic in constraint-based data mining
and the present research is a step towards rectifying this. Bringing the two most
common data mining tasks closer together (as done in predictive clustering)
moves us towards finding a general framework for data mining, which is also the
main goal of IDBs.

The rest of this paper is organized as follows. In the next section, we discuss
prediction, clustering and predictive clustering in more detail. Section 3 extends
predictive clustering toward rules and proposes the first system for building pre-
dictive clustering rules. The algorithm used in the system is a heuristic sequential
covering algorithm and the heuristic trades-off homogeneity w.r.t. the target at-
tributes and homogeneity w.r.t. the input attributes. We compare our system
to related approaches in Section 4. Section 5 evaluates the system on a number
of multi-objective classification and regression data sets. The paper ends with a
discussion of further work and a conclusion.

2 Prediction, Clustering, and Predictive Clustering

The tasks of predictive modelling and clustering are two of the oldest and most
commonly addressed tasks in data analysis and data mining. Here we briefly
introduce each of them and discuss predictive clustering, a task that combines
elements of both prediction and clustering.

2.1 Predictive Modelling

Predictive modeling aims at constructing models that can predict a target prop-
erty of an object from a description of the object. Predictive models are learned
from sets of examples, where each example has the form (D,T), with D being an
object description and T a target property value. While a variety of languages
ranging from propositional to first order logic have been used for D, T is al-
most always considered to consist of a single target attribute called the class:

236 B. Ženko, S. Džeroski, and J. Struyf

if this attribute is discrete we are dealing with a classification problem and if
continuous with a regression problem.

In practice, D is most commonly a vector and each element of this vector
is the value for a particular attribute (attribute-value representation). In the
remainder of the paper, we will consider both D and T to be vectors of attribute
values (discrete or real-valued). If T is a vector with several target attributes,
then we call the prediction task multi-objective prediction. If T only contains
discrete attributes we speak of multi-objective classification. If T only contains
continuous attributes we speak of multi-objective regression.

Predictive models can take many different forms that range from linear equa-
tions to logic programs. Two commonly used types of models are decision trees
[14] and rules [7]. Unlike (regression) equations that provide a single predictive
model for the entire example space, trees and rules divide the space of examples
into subspaces and provide a simple prediction or predictive model for each of
these.

2.2 Clustering and Clustering Trees

Clustering [9] in general is concerned with grouping objects into classes of similar
objects. Given a set of examples (object descriptions), the task of clustering is
to partition these examples into subsets, called clusters. Note that examples do
not contain a target property to be predicted, but only an object description
(which is typically a vector of attribute-values D). The goal of clustering is
to achieve high similarity between objects within individual clusters and low
similarity between objects that belong to different clusters.

Conventional clustering focuses on distance-based cluster analysis. The notion
of a distance (or conversely, similarity) is crucial here: examples are considered
to be points in a metric space (a space with a distance measure). A prototype
(or prototypical example) may be used as a representative for a cluster. Usually,
the prototype is the point with the lowest average distance to all the examples
in the cluster, i.e., the mean or the medoid of the examples.

In conceptual clustering [12], a symbolic representation of the resulting clus-
ters is produced in addition to the partition into clusters: we can thus consider
each cluster to be a concept (much like a class in classification). In this context,
a decision tree structure may be used to represent a hierarchical clustering: such
a tree is called a clustering tree [1]. In a clustering tree each node represents a
cluster. The conjunction of conditions on the path from the root to that node
gives a symbolic representation of the cluster. Essentially, each cluster has a
symbolic description in the form of a rule (IF conjunction of conditions THEN
cluster), while the tree structure represents the hierarchy of clusters. Clusters
that are not on the same branch of a tree do not overlap.

Given the above, predictive modelling approaches which divide the set of ex-
amples into subsets, such as decision tree and rule induction, are in a sense
very similar to clustering. A major difference is that they partition the space
of examples into subsets with homogeneous values of the target attribute, while
(distance-based) clustering methods seek subsets with homogeneous values of

Learning Predictive Clustering Rules 237

D (description)

T
(t

ar
ge

t)

Cluster in T(a)

D (description)
T

(t
ar

ge
t)

Cluster in D(b)

D (description)

T
(t

ar
ge

t)

Cluster in D × T(c)

Fig. 1. Predictive modelling (a), clustering (b), and predictive clustering (c)

the descriptive attributes. This is illustrated in Fig. 1. Assume that each ex-
ample has a description D ∈ D and is labeled with a target value T ∈ T . A
predictive tree learner will build a tree with leaves that are as pure as possi-
ble w.r.t. the target value, i.e., it will form clusters that are homogeneous in
T , as shown in Fig. 1.a. The reason is that the quality criterion that is used
to build the tree (e.g., information gain [14]) is based on the target attributes
only1. In unsupervised clustering, on the other hand, there is no target value
defined and the clusters that are generated will be homogeneous w.r.t. D, as
shown in Fig. 1.b. In the next section, we will consider predictive clustering,
which in general searches for clusters that are homogeneous w.r.t. to both D
and T (Fig. 1.c).

2.3 Predictive Clustering

The task of predictive clustering [2] combines elements from both prediction
and clustering. As is common in clustering, we seek clusters of examples that
are similar to each other (and dissimilar to examples in other clusters), but in
general taking both the descriptive and the target attributes into account. In
addition, a predictive model must be associated with each cluster; the model
gives a prediction of the target variables T in terms of the attributes D for all
examples that are established to belong to that cluster.

In the simplest and most common case, the predictive model associated to a
cluster would be the projection on T of the prototype of the examples that belong
to that cluster. This would be a simple average when T is a single continuous
variable. In the discrete case, it would be a probability distribution across the
discrete values or the mode thereof. When T is a vector, the prototype would be
a vector of averages and distributions/modes.

To summarize, in predictive clustering, each cluster has both a symbolic de-
scription (in terms of a language bias over D) and a predictive model (a prototype
1 Because the leaves of a decision tree have conjunctive descriptions in D, the cor-

responding clusters will also have some homogeneity w.r.t. D, but the latter is not
optimized by the system.

238 B. Ženko, S. Džeroski, and J. Struyf

in T) associated to it, i.e., the resulting clustering is defined by a symbolic model.
If we consider a tree based representation, then this model is called a predictive
clustering tree. Predictive clustering trees have been proposed by Blockeel et al.
[2]. In the next section, we will propose predictive clustering rules, a framework
in which the clustering model is represented as a rule set.

3 Predictive Clustering Rules (PCRs)

This section presents the main contribution of this paper, which is the predictive
clustering rules (PCRs) framework. We start with a general definition of PCRs.
Then we apply this general definition to the multi-objective prediction setting.
Finally, we propose a system for learning PCRs in this setting.

3.1 Definition

The task of learning a set of PCRs is defined as follows.

Given:

– a target space T
– a description space D
– a set of examples E = {ei}, with ei ∈ D × T
– a declarative language bias B over D
– a distance measure d that computes the distance between two examples
– a prototype function p that computes the prototype of a set of examples

Find a set of clusters, where

– each cluster is associated with a description expressed in B
– each cluster has an associated prediction expressed as a prototype
– within-cluster distance is low (similarity is high) and
– between-cluster distance is high (similarity is low)

Each cluster can thus be represented as a so-called predictive clustering rule,
which is a rule of the form “IF cluster description THEN cluster prototype”.

Example 1. Consider the data set shown in Fig 2.a. It has two numeric at-
tributes: a is a descriptive attribute and b is the target attribute, i.e., D = T = R.
Suppose that the distance metric is the Euclidean distance over R2. The corre-
sponding prototype is the vector average. If the language bias B allows conjunc-
tions of tests comparing a to a particular constant, then a possible set of PCRs
for this data set is shown in Fig 2.b.

Note that the description in the conditional part of a PCR only takes D into
account and not T . The reason is that it must be possible to apply the rule to
unseen examples later on for which T is not defined.

There are two main differences between PCRs and predictive clustering trees.
The first difference is that predictive clustering trees represent a hierarchical

Learning Predictive Clustering Rules 239

attribute a

at
tr

ib
ut

e
b

(a)

r1

r2

(b)

r1: IF a < 1.5 THEN [a = 1, b = 1]

r2: IF a > 1.5 THEN [a = 2, b = 2]

Fig. 2. A data set (left) and the corresponding set of predictive clustering rules (right)

clustering of the data whereas the clustering corresponding to a set of PCRs
is flat. The other difference is that the clusters defined by a set of PCRs may
overlap. In fact, there are two possible interpretations of a set of PCRs: the
rules can be ordered and treated as a decision list. In that case, a given example
belongs to the cluster of the first rule in the list that fires and the resulting
clustering is disjoint. On the other hand, if the rules are considered unordered,
then the clusters may overlap as several rules may apply to a given example.
If in the latter case a set of rules fire for a given example, then a method is
required for combining the predictions of the different rules. Such a method is
not required in predictive clustering trees since in that case the clusters are
guaranteed to be disjoint. We will propose a suitable combining method later in
the paper.

3.2 PCRs for Multi-objective Prediction (MOP)

In this section, we discuss the PCR framework in the context of multi-objective
prediction (MOP) tasks. This includes multi-objective classification and multi-
objective regression as discussed before. As a result, the examples will be of the
form (D,T) with D and T both vectors of attribute-values. MOP has two main
advantages over using a separate model for each target attribute: (1) a single
MOP model is usually much smaller than the total size of the individual models
for all attributes, and (2) a MOP model may explicitate dependencies between
the different target variables [17].

The distance metric that we will use in the clustering process takes both D
and T into account and is defined as follows.

d = (1− τ)dD + τdT . (1)

It has two components, one for the descriptive part dD and a second one for
the target part dT and the relative contribution of the two components can be
changed by means of the parameter τ .

In our rule induction algorithm, we will estimate the quality of a (partial)
rule that covers a set of examples S as the average distance of an example in S

240 B. Ženko, S. Džeroski, and J. Struyf

to the prototype of S. We will call this the “compactness” of the rule. Because
the attributes can in general be nominal or numeric, different measures for each
type are needed which are then combined (added) into a single measure.

For nominal attributes, the prototype is a vector with as components the
frequencies of each of the attribute’s values in the given set of examples S, i.e.,
for an attribute with k possible values (v1 to vk), the prototype is of the form
[f1, f2, . . . , fk], with fi the frequency of vi in S. The distance between an example
and the prototype is defined as follows: if the attribute value for the example
is vi, then the distance to the prototype is defined as (1 − fi). For numeric
attributes, the prototype is the mean of the attribute’s values and the distance
between an example and the prototype is computed as the absolute difference.
Numeric attributes are normalized during a preprocessing step such that their
mean is zero and their variance is one.

Example 2. Consider a data set with a nominal attribute a with possible values
⊕ and + and a numeric attribute b. There are three examples in S: [⊕, 1], [⊕, 2],
and [+, 1]. The prototype for a is the vector [2/3, 1/3] and the prototype for b is
2. The compactness of a is 4/9 and the compactness of b is 2/3. The combined
compactness is 2/3 + 4/9 = 10/9.

Note that our compactness measure is actually an “incompactness” measure,
since smaller values mean more compact sets of examples.

The declarative bias will restrict our hypothesis language to rules consisting
of conjunctions of attribute-value conditions over the attributes D. In particular,
we consider subset tests for nominal attributes and inequality tests for numeric
attributes. Additional language constraints are planned for consideration.

3.3 Learning Predictive Clustering Rules

This section describes our system for learning PCRs. The majority of rule in-
duction methods are based on a sequential covering algorithm and among these
the CN2 algorithm [4] is well known. Our system is based on this algorithm, but
several important parts are modified. In this section we first briefly describe the
original CN2 algorithm, and then we present our modifications.

Rule Induction with CN2. The CN2 algorithm iteratively constructs rules
that cover examples with homogeneous target variable values. The heuristic used
to guide the search is simply the accuracy of the rule under construction. After
a rule has been constructed, the examples covered by this rule are removed from
the training set, and the procedure is repeated on the new data set until the
data set is empty or no new rules are found. The rules constructed in this way
are ordered, meaning that they can be used for prediction as a decision list;
we test rules on a new example one by one and the first rule that fires is used
for prediction of the target value of this example. Alternatively, CN2 can also
construct unordered rules if only correctly classified examples are removed from
the training set after finding each rule and if rules are built for each class in
turn. When using unordered rules for prediction, several rules can fire on each
example and a combining method is required as discussed before.

Learning Predictive Clustering Rules 241

The Search Heuristic: Compactness. The main difference between CN2
and the approach presented in this paper is the heuristic that is used for guiding
the search for rules. The purpose of the heuristic is to evaluate different rules;
it should measure the quality of each rule separately and/or the quality of the
whole rule set.

One of the most important properties of rules (and other models) is their
accuracy, and standard CN2 simply uses this as a heuristic. Accuracy is only
connected to the target attribute. Our goal when developing predictive clustering
rules was (besides accuracy) that the induced rules should cover compact subsets
of examples, just as clustering does. For this purpose we need a heuristic which
takes into account the target attributes as well as the descriptive attributes.

As explained above, we will use the compactness (average distance of an ex-
ample covered by a rule to the prototype of this set of examples). The compact-
ness takes into account both the descriptive and the target attributes and is a
weighted sum of the compactness along each of the dimensions (the latter are
normalized to be between 0 and 1). At present only a general weight τ is applied
for putting the emphasis on the targets attributes (τ = 1) or the input attributes
(τ = 0): target attributes should in general have higher weights in order to guide
the search toward accurate rules.

Weighted Covering. The standard covering algorithm removes the examples
covered by a rule from the training set in each iteration. As a consequence, subse-
quent rules are constructed on smaller example subsets which can be improperly
biased and can have small coverage. To overcome these shortages we employ the
weighted covering algorithm [11]. The difference is that once an example is cov-
ered by a new rule, it is not removed from the training set but instead, its weight
is decreased. As a result, the already covered example will be less likely covered
in the next iterations. We use the additive weighting scheme, which means that
the weight of an example after being covered m times is equal to 1

1+m . Finally,
when the example is covered more than a predefined number of times (in our
experiments five), the example is completely removed from the training set.

Probabilistic Classification. As already mentioned, the original CN2 algo-
rithm can induce ordered or unordered rules. In case of ordered rules (i.e., a
decision list) the classification is straightforward. We scan the rules one by one
and whichever rule fires first on a given example is used for prediction. If no
rule fires, the default rule is used. When classifying with unordered rules, CN2
collects class distributions of all rules that fire on an example and uses them for
weighted voting. We use the same probabilistic classification scheme even though
our unordered rules are not induced for each possible class value separately.

4 Related Work

Predictive modeling and clustering are regarded as quite different tasks. While
there are many approaches addressing each of predictive modelling and cluster-
ing, few approaches look at both or try to relate them. A different viewpoint is

242 B. Ženko, S. Džeroski, and J. Struyf

taken by Langley [10]: predictive modeling and clustering have many similari-
ties and this has motivated some recent research on combining prediction and
clustering.

The approach presented in this paper is closely related to predictive clustering
trees [2], which also address the task of predictive clustering. The systems Tilde
[2] and Clus [3] use a modified top-down induction of decision trees algorithm
to construct clustering trees (which can predict values of more than one target
variables simultaneously). So far, however, distances used in Tilde and Clus
systems have considered attributes or classes separately, but not both together,
even though the idea was presented in [1].

Our approach uses a rule-based representation for predictive clustering. As
such, it is closely related to approaches for rule induction, and among these in
particular CN2 [4]. However, it extends rule induction to the more general task
of multi-objective prediction. While some work exists on multi-objective classi-
fication with decision trees (e.g., [19]), the authors are not aware of any work on
rule-induction for multi-objective classification. Also, little work exists on rule-
based regression (e.g., R2 [21] for propositional learning and FORS [8] for first
order logic learning), let alone rule-based multi-objective regression (or multi-
objective prediction in general, with mixed continuous and discrete targets).

Related to rule induction is subgroup discovery [11], which tries to find and
describe interesting groups of examples. While subgroup discovery algorithms
are similar to rule induction ones, they have introduced interesting innovations,
including the weighted covering approach used in our system.

Another related approach to combining clustering and classification is itemset
constrained clustering [15, 16]. Here the attributes describing each example are
separated in two groups, called feature items and objective attributes. Clustering
is done on the objective attributes, but only clusters which can be described in
terms of frequent item sets (using the feature items attributes) are constructed.
As a result each cluster can be classified by a corresponding frequent item set.

As in our approach, itemset classified clustering tries to find groups of ex-
amples with small variance of the objective attributes. As compared to itemset
classified clustering, our approach allows both discrete (and not only binary at-
tributes / items) and continuous variables on the feature/attribute side, as well
as the objective/target side. Itemset constrained clustering is also related to sub-
group discovery, as it tries to find interesting groups of examples, rather than
a set of (overlapping) clusters that cover all examples. A second important dif-
ference is that in itemset classified clustering the distance metric takes only the
objective attributes into account, whereas the rules constructed by our approach
are also compact w.r.t. the descriptive space.

5 Experiments

The current implementation of predictive clustering rules has been tested on
several classification problems with multiple target attributes. For each data
set two sets of experiments have been performed. First, we tried to test the
performance of our method when predicting multiple target attributes at once

Learning Predictive Clustering Rules 243

in comparison to single target attribute prediction task. In the second set of
experiments we investigated the influence of the target weighting parameter (τ)
on the accuracy and compactness of induced rules.

5.1 Data Sets

There are not a lot of publicly available data sets suitable for multi-target classi-
fication. However, some of the data sets from the UCI repository [13] can also be
used for this purpose, namely the data sets monks, solar-flare, and thyroid. The
first two data sets have three target attributes each, while the third has seven.

In addition to these UCI data sets we have also used Slovenian rivers water
quality data set (water-quality). The data set comprises biological and chemical
data that were collected through regular monitoring of rivers in Slovenia. The
data come from the Environmental Agency of the Republic of Slovenia that
performs water quality monitoring for most Slovenian rivers and maintains a
database of water quality samples. The data cover a six year period, from 1990
to 1995 and have been previously used in [5].

Biological samples are taken twice a year, once in summer and once in winter,
while physical and chemical analysis are performed several times a year for each
sampling site. The physical and chemical samples include the measured values
of 15 different parameters. The biological samples include a list of all taxa (plant
and animal species) present at the sampling site. All the attributes of the data
set are listed in Table 1. In total, 1060 water samples are available in the data

Table 1. The attributes of the river water quality data set

Independent attributes Target attributes
physical & chemical properties taxa – presences/absences
numeric type nominal type (0,1)

water temperature Cladophora sp.
alkalinity (pH) Gongrosira incrustans
electrical conductivity Oedogonium sp.
dissolved O2 Stigeoclonium tenue
O2 saturation Melosira varians
CO2 conc. Nitzschia palea
total hardness Audouinella(Chantransia) chalybea
NO2 conc. Erpobdella octoculata
NO3 conc. Gammarus fossarum
NH4 conc. Baetis rhodani
PO4 conc. Hydropsyche sp.
Cl conc. Rhyacophila sp.
SiO2 conc. Simulium sp.
chemical oxygen demand – KMnO4 Tubifex sp.
chemical oxygen demand – K2Cr2O7

biological oxygen demand (BOD)

244 B. Ženko, S. Džeroski, and J. Struyf

set. In our experiments we have considered the physical and chemical properties
as independent attributes, and presences/absences of taxa as target attributes.

5.2 Results

The first set of experiments was performed in order to test the appropriateness
of predictive clustering rules for multiple target prediction. In all experiments the
minimal number of examples covered by a rule was 20, and the weight of target at-
tributes (τ) was set to 1. The results of 10-fold cross validation can be seen for each
data set separately in Tables 2, 3, 4, and 5. The first columns in tables are the accu-
racies for each target attribute as predicted by the PCR multi-target models and
in the second columns are accuracies as predicted by the PCR single-target mod-
els. Third and fourth columns are accuracies for predictive clustering trees (PCT).
The last rows in the tables give the average accuracies across all target attributes.

Looking at these average accuracies we can see that the performance of models
predicting all classes together is comparable to the performance of single target
models. There are no significant differences for the monks, solar-flare and thyroid
data sets, while the multi-target model is somewhat worse than single-target
models on the water quality data set. When comparing predictive clustering
rules to predictive clustering trees, the performance of the latter is somewhat
better on the thyroid and water quality data set but a little worse on the monks
data set; there are no differences on the solar-flare data set.

Table 2. Monks data set. Accuracies of predictive clustering rules (PCR) and predic-
tive clustering trees (PCT) used for multi-objective prediction of all target attributes
together and for single target prediction of each target attribute separately.

PCR PCT
Target attribute All Indiv. All Indiv.

monk–1 0.803 0.810 0.711 0.764
monk–2 0.671 0.669 0.664 0.627
monk–3 0.935 0.935 0.972 0.972

Average accuracy 0.803 0.805 0.782 0.788

Table 3. Solar-flare data set. Accuracies of predictive clustering rules (PCR) and pre-
dictive clustering trees (PCT) used for multi-objective prediction of all target attributes
together and for single target prediction of each target attribute separately.

PCR PCT
Target attribute All Indiv. All Indiv.

class–c 0.828 0.829 0.829 0.826
class–m 0.966 0.966 0.966 0.966
class–x 0.995 0.995 0.995 0.995

Average accuracy 0.930 0.930 0.930 0.929

Learning Predictive Clustering Rules 245

Table 4. Thyroid data set. Accuracies of predictive clustering rules (PCR) and predic-
tive clustering trees (PCT) used for multi-objective prediction of all target attributes
together and for single target prediction of each target attribute separately.

PCR PCT
Target attribute All Indiv. All Indiv.

hyperthyroid 0.974 0.975 0.983 0.984
hypothyroid 0.941 0.947 0.989 0.989
binding protein 0.955 0.961 0.974 0.975
general health 0.970 0.972 0.984 0.985
replacement theory 0.961 0.963 0.985 0.990
antithyroid treatment 0.996 0.996 0.996 0.996
discordant results 0.979 0.979 0.987 0.989

Average accuracy 0.968 0.971 0.986 0.987

Table 5. Water quality data set. Accuracies of predictive clustering rules (PCR) and
predictive clustering trees (PCT) used for multi-objective prediction of all target at-
tributes together and for single target prediction of each target attribute separately.

PCR PCT
Target attribute All Indiv. All Indiv.

Cladophora sp. 0.594 0.629 0.630 0.648
Gongrosira incrustans 0.733 0.729 0.722 0.665
Oedogonium sp. 0.713 0.717 0.723 0.710
Stigeoclonium tenue 0.795 0.790 0.796 0.771
Melosira varians 0.569 0.611 0.638 0.643
Nitzschia palea 0.688 0.662 0.714 0.708
Audouinella chalybea 0.751 0.756 0.747 0.712
Erpobdella octoculata 0.721 0.741 0.712 0.691
Gammarus fossarum 0.628 0.654 0.664 0.688
Baetis rhodani 0.676 0.723 0.686 0.700
Hydropsyche sp. 0.584 0.604 0.614 0.630
Rhyacophila sp. 0.686 0.710 0.708 0.709
Simulium sp. 0.633 0.635 0.593 0.642
Tubifex sp. 0.728 0.745 0.735 0.739

Average accuracy 0.679 0.693 0.692 0.690

The task of the second set of experiments was to evaluate the influence of
the target weighting parameter (τ) on the accuracy and cluster compactness of
induced rules (Tables 6, 7, 8, and 9). Rules were induced for predicting all target
attributes together with six different values of the τ parameter. At the bottom
of each table are the average accuracies of 10-fold cross-validation and average
compactness of subsets of examples (clusters) covered by rules in each model.

246 B. Ženko, S. Džeroski, and J. Struyf

Table 6. Monks data set. The accuracy and cluster compactness of predictive clustering
rules used for multiple target prediction of all target attributes together with different
target attributes weightings (τ).

τ
Target attribute 0.5 0.7 0.8 0.9 0.95 1

monk–1 0.843 0.840 0.806 0.833 0.831 0.803
monk–2 0.671 0.671 0.671 0.671 0.671 0.671
monk–3 0.949 0.965 0.975 0.958 0.938 0.935

Average accuracy 0.821 0.826 0.817 0.821 0.813 0.803
Average compactness 0.487 0.486 0.486 0.495 0.506 0.516

Table 7. Solar flare data set. The accuracy and cluster compactness of predictive
clustering rules used for multiple target prediction of all target attributes together
with different target attributes weightings (τ).

τ
Target attribute 0.5 0.7 0.8 0.9 0.95 1

class–c 0.829 0.829 0.829 0.829 0.829 0.828
class–m 0.966 0.966 0.966 0.966 0.966 0.966
class–x 0.995 0.995 0.995 0.995 0.995 0.995

Average accuracy 0.930 0.930 0.930 0.930 0.930 0.930
Average compactness 0.158 0.159 0.161 0.181 0.207 0.239

Table 8. Thyroid data set. The accuracy and cluster compactness of predictive clus-
tering rules used for multiple target prediction of all target attributes together with
different target attributes weightings (τ).

τ
Target attribute 0.5 0.7 0.8 0.9 0.95 1

hyperthyroid 0.974 0.974 0.974 0.974 0.974 0.974
hypothyroid 0.927 0.927 0.927 0.927 0.928 0.941
binding protein 0.955 0.955 0.955 0.955 0.955 0.955
general health 0.938 0.938 0.938 0.938 0.939 0.970
replacement theory 0.961 0.961 0.961 0.961 0.961 0.961
antithyroid treatment 0.996 0.996 0.996 0.996 0.996 0.996
discordant results 0.979 0.979 0.979 0.979 0.979 0.979

Average accuracy 0.961 0.961 0.961 0.961 0.962 0.968
Average compompactness 1739 1797 1705 1591 1603 1605

The rules induced with larger weighting of the non-target attributes (smaller
τ) are on average more compact on the monks and solar-flare data sets (smaller
number for compactness means more compact subsets) while there is no clear
trend for the thyroid data set and no influence at all on the water quality data

Learning Predictive Clustering Rules 247

Table 9. Water quality data set. The accuracy and cluster compactness of predictive
clustering rules used for multiple target prediction of all target attributes together with
different target attributes weightings (τ).

τ
Target attribute 0.5 0.7 0.8 0.9 0.95 1

Cladophora sp. 0.586 0.593 0.597 0.599 0.600 0.594
Gongrosira incrustans 0.733 0.733 0.733 0.733 0.733 0.733
Oedogonium sp. 0.716 0.719 0.716 0.717 0.718 0.713
Stigeoclonium tenue 0.792 0.793 0.793 0.793 0.793 0.795
Melosira varians 0.580 0.584 0.578 0.581 0.575 0.569
Nitzschia palea 0.656 0.664 0.657 0.655 0.661 0.688
Audouinella chalybea 0.753 0.753 0.753 0.753 0.753 0.751
Erpobdella octoculata 0.738 0.742 0.742 0.741 0.742 0.721
Gammarus fossarum 0.628 0.641 0.629 0.630 0.632 0.628
Baetis rhodani 0.676 0.676 0.676 0.676 0.676 0.676
Hydropsyche sp. 0.566 0.564 0.568 0.567 0.565 0.584
Rhyacophila sp. 0.684 0.685 0.685 0.685 0.685 0.686
Simulium sp. 0.639 0.640 0.640 0.640 0.646 0.633
Tubifex sp. 0.732 0.729 0.725 0.730 0.731 0.728

Average accuracy 0.677 0.680 0.678 0.679 0.679 0.679
Average compactness 0.348 0.348 0.348 0.348 0.348 0.350

set. Larger weighting of the non-target attributes has very little effect on the
accuracy of the models except in case of the monks data set, where it improves
accuracy.

6 Conclusions and Further Work

In this paper, we have considered the data mining task of predictive cluster-
ing. This is a very general task that contains many features of (and thus to
a large extent generalizes over) the tasks of predictive modelling and clus-
tering. While this task has been considered before, we have defined it both
more precisely and in a more general form (i.e., to consider distances on both
target and attribute variables and to consider clustering rules in addition to
trees).

We have introduced the notion of clustering rules and focused on the task
of learning predictive clustering rules for multi-objective prediction. The task
of inducing PCRs generalizes the task of rule induction, extending it to multi-
objective classification, regression and in general prediction. It also generalizes
some forms of distance-based clustering and in particular itemset constrained
clustering (e.g., it allows both discrete and continuous variables on the fea-
ture/attribute side, as well as the objective/target side).

LearningPCRs andpredictive clustering in general can be viewed as constrained
clustering, where clusters that have an explicit representation in a language of
constraints are sought. At present PCR clusters are arbitrary rectangles in the

248 B. Ženko, S. Džeroski, and J. Struyf

attribute space, as arbitrary conjunctions of conditions are allowed in the rule an-
tecedents. However, one can easily imagine additional language constraints being
imposed on rule antecedents.

Viewing precitive clustering as constrained clustering makes it directly related
to constraint-based data mining and inductive databases (IDBs). Constraint-
based clustering is an under-researched topic in constraint-based data mining
and the present research is a step towards rectifying this. Bringing the two most
common data mining tasks closer together (as done in predictive clustering)
moves us towards finding a general framework for data mining, which is also the
main goal of IDBs.

We have implemented a preliminary version of a system for learning PCRs for
multi-objective classification. We have also performed some preliminary exper-
iments on several data sets. The results show that a single rule-set for MOC
can be as accurate as the collection of rule-sets for individual prediction of
each target. The accuracies are also comparable to those of predictive clus-
tering trees. Experiments in varying the weight of target vs. non-target at-
tributes in the compactness heuristic used in the search for rules show that
non-zero weights for non-targets increase overall compactness and sometimes also
accuracy.

Note, however, that many more experiments are necessary to evaluate the
proposed paradigm and implementation. These would include experiments on
additional data sets for multi-objective prediction, where classification, regres-
sion and a mixture thereof should be considered. Also, a comparison to other
approaches to constrained clustering would be in order.

Other directions for further work concern further development of the PCR
paradigm and its implementation. At present, our implementation only considers
multi-objective classification, but can be easily extended to regression problems,
and also to mixed, classification/regression problems. Currently, the heuristic
guiding the search for rules does not take the number of covered examples in
consideration. Consequently, construction of overly specific rules can only be
prevented by means of setting the minimum number of examples covered by a
rule. Adding a coverage dependent part to the heuristic would enable the induc-
tion of compact rules with sufficient coverage. Another possibility is the use of
some sort of significance testing analogous to significance testing of the target
variable distribution employed by CN2.

Finally, the selection of weights for calculating the distance measure (and the
compactness heuristic) is an open issue. One side of this is the weighting of tar-
get vs. non-target variables. Another side is the assignment of relevance-based
weights to the attributes: while this has been considered for single-objective
classification, we need to extend it to multi-objective prediction.

Acknowledgements

This work was supported by the EU project Inductive Queries for Mining Pat-
terns and Models (IQ), contract 516169. Jan Struyf is a post-doctoral fellow of

Learning Predictive Clustering Rules 249

the Fund for Scientific Research of Flanders (FWO-Vlaanderen). Many thanks
to Hendrick Blockeel for his useful comments on an earlier draft of this paper.

References

1. Blockeel, H. (1998): Top-down induction of first order logical decision trees. PhD
thesis, Department of Computer Science, Katholieke Universiteit, Leuven.

2. Blockeel, H., De Raedt, L., and Ramon, J. (1998): Top-down induction of clustering
trees. Proceedings of the 15th International Conference on Machine Learning, pages
55–63, Morgan Kaufmann.

3. Blockeel, H. and Struyf, J. (2002): Efficient algorithms for decision tree cross-
validation, Journal of Machine Learning Research, 3(Dec):621–650, Microtome
Publishing.

4. Clark, P. and Niblett, T. (1989): The CN2 Induction Algorithm, Machine Learning,
3:261–283, Kluwer.

5. Džeroski, S., Demšar, D., and Grbović, J. (2000): Predicting chemical parameters
of river water quality from bioindicator data. Applied Intelligence, 13(1): 7–17.

6. Džeroski, S., Blockeel, H., and Grbović. (2001): Predicting river water communities
with logical decision trees. Presented at the Third European Ecological Modelling
Conference, Zagreb, Croatia.

7. Flach, P. and Lavrač, N. (1999): Rule induction. In Intelligent Data Analysis, eds.
Berthold, M. and Hand, D. J., pages 229–267, Springer.

8. Karalič, A. and Bratko, I. (1997): First Order Regression. Machine Learning,
26:147–176, Kluwer.

9. Kaufman, L. and Rousseeuw, P. J. (1990): Finding groups in data: An introduction
to cluster analysis, John Wiley & Sons.

10. Langley, P. (1996): Elements of Machine Learning. Morgan Kaufman.
11. Lavrač, N., Kavšek, B., Flach, P., and Todorovski, L. (2004): Subgroup discovery

with CN2-SD, Journal of Machine Learning Research, 5(Feb):153–188, Microtome
Publishing.

12. Michalski, R. S. (1980): Knowledge acquisition through conceptual clustering: A
theoretical framework and algorithm for partitioning data into conjunctive con-
cepts. International Journal of Policy Analysis and Information Systems, 4:219–
243.

13. Newman, D. J., Hettich, S., Blake, C. L., and Merz, C. J. (1998): UCI Repository
of machine learning databases. University of California, Irvine, CA.

14. Quinlan, J. R. (1993): C4.5: Programs for Machine Learning. Morgan Kaufmann.
15. Sese, J. and Morishita, S. (2004): Itemset Classified Clustering. Proceedings of the

Eighth European Conference on Principles and Practice of Knowledge Discovery
in Databases (PKDD’04), pages 398–409, Springer.

16. Sese, J., Kurokawa, Y., Kato, K., Monden, M., and Morishita, S. (2004) Con-
strained clusters of gene expression profiles with pathological features. Bioinfor-
matics.

17. Struyf, J., and Dzeroski, S. (2005): Constraint based induction of multi-objective
regression trees. Proceedings of the 4th International Workshop on Knowledge Dis-
covery in Inductive Databases (KDID 2005), pages 110-121.

18. Struyf, J., Dzeroski, S., Blockeel, H., and Clare, A. (2005): Hierarchical multi-
classification with predictive clustering trees in functional genomics. Proceedings
of Workshop on Computational Methods in Bioinformatics as part of the 12th
Portuguese Conference on Artificial Intelligence, pages 272-283, Springer.

250 B. Ženko, S. Džeroski, and J. Struyf

19. Suzuki, E., Gotoh,M., and Choki, Y. (2001): Bloomy Decision Tree for Multi-
objective Classification. Proceedings of the Fifth European Conference on Principles
and Practice of Knowledge Discovery in Databases (PKDD’01), pages 436-447,
Springer.

20. Todorovski, L., Blockeel, H., and Dzeroski, S. (2002): Ranking with predictive clus-
tering trees. Machine Learning: 13th European Conferende on Machine Learning,
Proceedings, pages 444-456, Springer.

21. Torgo, L. (1995): Data Fitting with Rule-based Regression. Proceedings of the work-
shop on Artificial Intelligence Techniques (AIT’95), Zizka, J. and Brazdil, P. (eds.),
Brno, Czech Republic.

Author Index

Atzori, Maurizio 38
Aufschild, Volker 124

Besson, Jérémy 55
Blockeel, Hendrik 72
Boulicaut, Jean-François 55

Calders, Toon 86
Crémilleux, Bruno 202

Džeroski, Sašo 222, 234

Goethals, Bart 86

Hapfelmeier, Andreas 124

Jarasch, Alexander 124
Jen, Tao-Yuan 104

Kessler, Kristina 124
Kok, Joost N. 165
Kramer, Stefan 124

Laurent, Dominique 104
Lukács, András 188

Mancarella, Paolo 38
Mielikäinen, Taneli 139

Nijssen, Siegfried 165

Pensa, Ruggero G. 55

Reckow, Stefan 124
Richter, Lothar 124
Robardet, Céline 55

Sidló, Csaba István 188
Siebes, Arno 1
Soulet, Arnaud 202
Spyratos, Nicolas 104
Struyf, Jan 222, 234
Sy, Oumar 104

Turini, Franco 38

Wicker, Jörg 124

Zaniolo, Carlo 24
Ženko, Bernard 234

	Frontmatter
	Invited Papers
	Data Mining in Inductive Databases
	Mining Databases and Data Streams with Query Languages and Rules

	Contributed Papers
	Memory-Aware Frequent {\itshape k}-Itemset Mining
	Constraint-Based Mining of Fault-Tolerant Patterns from Boolean Data
	Experiment Databases: A Novel Methodology for Experimental Research
	Quick Inclusion-Exclusion
	Towards Mining Frequent Queries in Star Schemes
	Inductive Databases in the Relational Model: The Data as the Bridge
	Transaction Databases, Frequent Itemsets, and Their Condensed Representations
	Multi-class Correlated Pattern Mining
	Shaping SQL-Based Frequent Pattern Mining Algorithms
	Exploiting Virtual Patterns for Automatically Pruning the Search Space
	Constraint Based Induction of Multi-objective Regression Trees
	Learning Predictive Clustering Rules

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

